• Title/Summary/Keyword: decomposition pathway

Search Result 34, Processing Time 0.018 seconds

Study on Thermal Properties of CdS - Embedded Poly(2-Acetamidoacrylic acid) Hydrogel Composite (CdS 나노입자틀 삽입한 Poly(2-Acetamidoacrylic acid) 수화젤 복합체의 열적 특성에 관한 연구)

  • Park, Chun-Ho;Ha, Eun-Ju;Jung, Jong-Mo;Lee, Jang-Oo;Paik, Hyun-Jong
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • We report the template-based synthesis of well-dispersed CdS nanoparticles (NPs) in the interior of poly (2-acetamidoacrylic acid) (PAAA) hydrogel as a novel type of nanocomposite without particle aggregation via ion exchange in a aqueous system. As revealed by the TEM image analysis, the mean crystallite diameter of CdS NPs embedded in hydrogel composite was 4.5 nm, and the composite did not suffer any observable change after 6 months. Desorption/decomposition of CdS/PAAA hydrogel composite was studied by evolved gas analysis-gas chromatography-mass spectrometry (EGA-GC-MS), and thermogravimetric analysis (TGA) methods. From the TGA data, the thermal stability of the composite system increased by ca. 100 $^\circ$C and the content of CdS NPs in a dry composite gel was over 70 wt%. In addition, the chemical pathway was proposed for the entire decomposition process.

Comparison of Azo-dye Removal Based on the Enzymatic Differences in T. versicolor and P. chrysosporium (T. versicolor와 P. chrysosporium의 효소발현 특성에 따른 Azo계 염료(Orange II) 제거 특성 비교)

  • Kim, Hak-Yoon;Oh, Je-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.712-718
    • /
    • 2005
  • Stepwise reductions of glucose and Orange II concentration were observed from the experiment of both white-rot fungi such as T. versicolor and P. chrysosporium. As a result, typical removal patterns in those dual substrate system were categorized through several distinctive steps: initial lag period, primary and secondary carbon consumption periods. Also, based on the total removal amounts of Orange II, COD and Color during the experimental period, similar removal extent were observed from both species experiments, within the maximal error range of 5%. However, it was refereed that the internal steps of Orange II removal on enzymatic level should be different between two species: Enzyme Lac showed good affinity for Orange II removal in T. versicolor, however in P. chrysosporium enzyme LiP represented more close affinity to the similar experimental condition. Thus, even though the superficial removal amount of calcitrant Orange II at different fungal species was merely similar, removal pathway of enzymatic levels and intermediates produced during the fungal decomposition would be different.

Thermal Product Distribution of Chlorinated Hydrocarbons with Pyrolytic Reaction Conditions (열분해 반응조건에 따른 염화탄화수소 생성물 분포 특성)

  • Kim, Yong-Je;Won, Yang-Soo
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.198-205
    • /
    • 2010
  • Two sets of thermal reaction experiment for chlorinated hydrocarbons were performed using an isothermal tubular-flow reactor in order to investigate thermal decomposition, including product distribution of chlorinated hydrocarbons. The effects of $H_2$ or Ar as the reaction atmosphere on the thermal decomposition and product distribution for dichloromethane($CH_2Cl_2$) was examined. The experimental results showed that higher conversion of $CH_2Cl_2$ was obtained under $H_2$ atmosphere than under Ar atmosphere. This phenomenon indicates that reactive-gas $H_2$ reaction atmosphere was found to accelerate $CH_2Cl_2$ decomposition. The $H_2$ plays a key role in acceleration of $CH_2Cl_2$ decomposition and formation of dechlorinated light hydrocarbons, while reducing PAH and soot formation through hydrodechlorination process. It was also observed that $CH_3Cl,\;CH_4,\;C_2H_6,\;C_2H_4$ and HCl in $CH_2Cl_2/H_2$ reaction system were the major products with some minor products including chloroethylenes. The $CH_2Cl_2$/Ar reaction system gives poor carbon material balance above reaction temperature of $750^{\circ}C$. Chloroethylenes and soot were found to be the major products and small amounts of $CH_3Cl$ and $C_2H_2$ were formed above $750^{\circ}C$ in $CH_2Cl_2$/Ar. The thermal decomposition reactions of chloroform($CHCl_3$) with argon reaction atmosphere in the absence or the presence of $CH_4$ were carried out using the same tubular flow reactor. The slower $CH_3Cl$ decay occurred when $CH_4$ was added to $CH_3Cl$/Ar reaction system. This is because :$CCl_2$ diradicals that had been produced from $CHCl_3$ unimolecular dissociation reacted with $CH_4$. It appears that the added $CH_4$ worked as the :$CCl_2$ scavenger in the $CHCl_3$ decomposition process. The product distributions for $CHCl_3$ pyrolysis under argon bath gas were distinctly different for the two cases: one with $CH_4$ and the other without $CH_4$. The important pyrolytic reaction pathways to describe the important features of reagent decay and intermediate product distributions, based upon thermochemistry and kinetic principles, were proposed in this study.

Biodegradation of Feather Waste Keratin by the Keratin-Degrading Strain Bacillus subtilis 8

  • He, Zhoufeng;Sun, Rong;Tang, Zizhong;Bu, Tongliang;Wu, Qi;Li, Chenlei;Chen, Hui
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.314-322
    • /
    • 2018
  • Bacillus subtilis 8 is highly efficient at degrading feather keratin. We observed integrated feather degradation over the course of 48 h in basic culture medium while studying the entire process with scanning electron microscopy. Large amounts of ammonia, sulfite, and $\text\tiny{L}$-cysteic acid were detected in the fermented liquid. In addition, four enzymes (gamma-glutamyltranspeptidase, peptidase T, serine protease, and cystathionine gamma-synthase) were identified that play an important role in this degradation pathway, all of which were verified with molecular cloning and prokaryotic expression. To the best of our knowledge, this report is the first to demonstrate that cystathionine gamma-synthase secreted by B. subtilis 8 is involved in the decomposition of feather keratin. This study provides new data characterizing the molecular mechanism of feather degradation by bacteria, as well as potential guidance for future industrial utilization of waste keratin.

Long-term Environmental Changes: Interpretations from a Marine Benthic Ecologist's Perspective (II) -Eutrophication and Substratum Properties

  • Yoo Jae-Won;Hong Jae-Sang;Lee Jae June
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.2
    • /
    • pp.210-217
    • /
    • 1999
  • Chemical oxygen demand (COD), phytoplankton cell number and chlorophyll-a concentration (Chl-a), sediment mean grain size and ignition loss were studied to determine their temporal trends in the study area. Historical data of COD, cell number and Chl-a were gathered from the late 1960s or early 1980s to 1997, and trends in temporal domain were obtained from a simple regression. Sediments for grain size and ignition loss (as organic contents in sediments) were sampled from the Chokchon macrotidal flat bimonthly from September 1990 to November 1996, and were analyzed using the decomposition method of time series analysis. In general, the first three data showed increasing trends based on regression analysis. The trends of sediment grain size fluctuated in a neutral pathway while those of ignition loss yielded no increasing pattern. In contrast with the suggestions from Ahn and Choi (1998) who reported a coarsening variation in sediment grain size to be a cause of the directional and remarkable changes of macrofaunal communities in this area, we could not find such a corresponding variation pattern from our samples. In diagnosing eutrophication, a paradoxical phenomenon was encountered between the trends in water column (COD, cell number and Chl-a) and sediment (ignition loss) data. In this paper, we inferred the possible processes that produce the discrepancy. Some explanations and biological responses to eutrophication were predicted and discussed.

  • PDF

Hydrogenation of Ethyl Acetate to Ethanol over Bimetallic Cu-Zn/SiO2 Catalysts Prepared by Means of Coprecipitation

  • Zhu, Ying-Ming;Shi, Xin Wang Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.141-146
    • /
    • 2014
  • A series of bimetallic Cu-Zn/$SiO_2$ catalysts were prepared via thermal decomposition of the as-synthesized $CuZn(OH)_4(H_2SiO_3)_2{\cdot}nH_2O$ hydroxides precursors. This highly dispersed Cu-solid base catalyst is extremely effective for hydrogenation of ethyl acetate to ethanol. The reduction and oxidation features of the precursors prepared by coprecipitation method and catalysts were extensively investigated by TGA, XRD, TPR and $N_2$-adsorption techniques. Catalytic activity by ethyl acetate hydrogenation of reaction temperatures between 120 and $300^{\circ}C$, different catalyst calcination and reduction temperatures, different Cu/Zn loadings have been examined extensively. The relation between the performance for hydrogenation of ethyl acetate and the structure of the Cu-solid base catalysts with Zn loading were discussed. The detected conversion of ethyl acetate reached 81.6% with a 93.8% selectivity of ethanol. This investigation of the Cu-Zn/$SiO_2$ catalyst provides a recently proposed pathway for ethyl acetate hydrogenation reaction to produce ethanol over Cu-solid base catalysts.

Investigation on Reaction Pathways for ZnO Formation from Diethylzinc and Water during Chemical Vapor Deposition

  • Kim, Young-Seok;Won, Yong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1573-1578
    • /
    • 2009
  • A computational study of the reactions between Zn-containing species, the products of the thermal decomposition of diethylzinc (DEZn) and water was investigated. The Zn-containing species – $C_2H_5)_2,\;HZnC_2H_5,\;and\;(ZnC_2H_5)_2$ – were assumed to react with water during ZnO metal organic chemical vapor deposition (MOCVD). Density functional theory (DFT) calculations at the level of B3LYP/6-311G(d) were employed for the geometry optimization and thermodynamic property evaluation. As a result dihydroxozinc, $Zn(OH)_2$, was the most probable reaction product common for all three Zn-containing species. A further clustering of $Zn(OH)_2$ was investigated to understand the initial stage of ZnO film deposition. In experiments, the reactions of DEZn and water were examined by in-situ Raman scattering in a specially designed MOCVD reactor. Although direct evidence of $Zn(OH)_2$ was not observed, some relevant reaction intermediates were successfully detected to support the validity of the gas phase reaction pathways proposed in the computational study.

Bio-oil production using residual sewage sludge after lipid and carbohydrate extraction

  • Supaporn, Pansuwan;Ly, Hoang Vu;Kim, Seung-Soo;Yeom, Sung Ho
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.202-210
    • /
    • 2019
  • In order to maximize the utilization of sewage sludge, a waste from wastewater treatment facility, the residual sewage sludge generated after lipid and carbohydrate extraction for biodiesel and bioethanol production was used to produce bio-oil by pyrolysis. Thermogravimetric analysis showed that sludge pyrolysis mainly occurred between 200 and $550^{\circ}C$ (with peaks formed around 337.0 and $379.3^{\circ}C$) with the decomposition of the main components (carbohydrate, lipid, and protein). Bio-oil was produced using a micro-tubing reactor, and its yield (wt%, g-bio-oil/g-residual sewage sludge) increased with an increase in the reaction temperature and time. The maximum bio-oil yield of 33.3% was obtained after pyrolysis at $390^{\circ}C$ for 5 min, where the largest amount of energy was introduced into the reactor to break the bonds of organic compounds in the sludge. The main components of bio-oil were found to be trans-2-pentenoic acid and 2-methyl-2-pentenoic acid with the highest selectivity of 28.4% and 12.3%, respectively. The kinetic rate constants indicated that the predominant reaction pathway was sewage sludge to bio-oil ($0.1054min^{-1}$), and subsequently to gas ($0.0541min^{-1}$), rather than the direct conversion of sewage sludge to gas ($0.0318min^{-1}$).

Prospect of extreme precipitation in North Korea using an ensemble empirical mode decomposition method (앙상블 경험적 모드분해법을 활용한 북한지역 극한강수량 전망)

  • Jung, Jinhong;Park, Dong-Hyeok;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.671-680
    • /
    • 2019
  • Many researches illustrated that the magnitude and frequency of hydrological event would increase in the future due to changes of hydrological cycle components according to climate change. However, few studies performed quantitative analysis and evaluation of future rainfall in North Korea, where the damage caused by extreme precipitation is expected to occur as in South Korea. Therefore, this study predicted the extreme precipitation change of North Korea in the future (2020-2060) compared to the current (1981-2017) using stationary and nonstationary frequency analysis. This study conducted nonstationary frequency analysis considering the external factors (mean precipitation of JFM (Jan.-Mar.), AMJ (Apr.-Jun.), JAS (Jul.-Sept.), OND (Oct.-Dec.)) of the HadGEM2-AO model simulated according to the Representative Concentration Pathway (RCP) climate change scenarios. In order to select external factors that have a similar tendency with extreme rainfall events in North Korea, the maximum annual rainfall data was obtained by using the ensemble empirical mode decomposition (EEMD) method. Correlation analysis was performed between the extracted residue and the external factors. Considering selected external factors, nonstationary GEV model was constructed. In RCP4.5, four of the eight stations tended to decrease in future extreme precipitation compared to the present climate while three stations increased. On the other hand, in RCP8.5, two stations decreased while five stations increased.

Methane Gas Emission from an Artificial Reservoir under Asian Monsoon Climate Conditions, with a Focus on the Ebullition Pathway (아시아 몬순 기후지역에 위치한 대형 인공호에서 기포형태로의 메탄 (CH4) 가스 배출량)

  • Kim, Kiyong;Jung, Sungmin;Choi, Youngsoon;Peiffer, Stefan;Knorr, Klaus-Holger;Kim, Bomchul
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.2
    • /
    • pp.160-167
    • /
    • 2018
  • The role played by reservoirs in the biogeochemical cycles of elements is a subject of ongoing debate. Recent research has revealed that reservoirs emit significant levels of greenhouse gases. To assess the importance of reservoirs in monsoon climate areas as a source of methane gas into the atmosphere, we investigated variations in organic carbon (OC) input into the reservoir, oxic state changes, and finally the amount of methane emitted (focusing on the ebullition pathway) in Lake Soyang, which is the largest reservoir in South Korea. Total organic carbon (TOC) concentrations were higher during summer after two years of heavy rainfall. The sedimentation rates of particulate organic carbon (POC) and particulate organic nitrogen (PON) were higher in the epilimnion and hypolimnion than the metalimnioin, indicating that autochthonous and allochthonous carbon made separate contributions to the TOC. During stratification, oxygen depletion occurred in the hypolimnion due to the decomposition of organic matter. Under these conditions, $H_2S$ and $CH_4$ can be released from sediment. The methane emissions from the reservoir were much higher than from other natural lakes. However, the temporal and spatial variations of methane ebullition were huge, and were clearly dependent on many factors. Therefore, more research via a well-organized field campaign is needed to investigate methane emissions.