• Title/Summary/Keyword: decomposition optimization

Search Result 214, Processing Time 0.031 seconds

Joint optimization of beamforming and power allocation for DAJ-based untrusted relay networks

  • Yao, Rugui;Lu, Yanan;Mekkawy, Tamer;Xu, Fei;Zuo, Xiaoya
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.714-725
    • /
    • 2018
  • Destination-assisted jamming (DAJ) is usually used to protect confidential information against untrusted relays and eavesdroppers in wireless networks. In this paper, a DAJ-based untrusted relay network with multiple antennas installed is presented. To increase the secrecy, a joint optimization of beamforming and power allocation at the source and destination is studied. A matched-filter precoder is introduced to maximize the cooperative jamming signal by directing cooperative jamming signals toward untrusted relays. Then, based on generalized singular-value decomposition (GSVD), a novel transmitted precoder for confidential signals is devised to align the signal into the subspace corresponding to the confidential transmission channel. To decouple the precoder design and optimal power allocation, an iterative algorithm is proposed to jointly optimize the above parameters. Numerical results validate the effectiveness of the proposed scheme. Compared with other schemes, the proposed scheme shows significant improvement in terms of security performance.

Multi-Objective Optimization of Steel Frames For Standardized Steel Profiles Under Seismic Loads (지진하중을 받는 강뼈대구조물의 표준단면에 대한 다목적 최적설계)

  • Cho, Hyo Nam;Min, Dae Hong;Jeong, Bong Gyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.783-791
    • /
    • 2002
  • An improved formulation for multi-objective optimization was proposed. This formulation was applied to steel seismic loads. The multi-objective optimization problem was formulated with minimum structural weight, maximum strstability. The global criterion method was employed to find a rational solution closest to the ideal solution for the optimization problem using standard steel profile, To efficiently solve the optimization problem, the decomposition meth both system-level and element-level was used. In addition, various techniques including efficient reanalysis technique intermediate variables and sensitivity analysis using an automatic differentiation(AD) were incorporated. Moreover the reamong section properties fitted to the section profile used in order to link the system level and the element level. From numerical investigation, it could be stated that the proposed method will lead to the more rational design compared with one.

Adaptive Cross-Layer Resource Optimization in Heterogeneous Wireless Networks with Multi-Homing User Equipments

  • Wu, Weihua;Yang, Qinghai;Li, Bingbing;Kwak, Kyung Sup
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.784-795
    • /
    • 2016
  • In this paper, we investigate the resource allocation problem in time-varying heterogeneous wireless networks (HetNet) with multi-homing user equipments (UE). The stochastic optimization model is employed to maximize the network utility, which is defined as the difference between the HetNet's throughput and the total energy consumption cost. In harmony with the hierarchical architecture of HetNet, the problem of stochastic optimization of resource allocation is decomposed into two subproblems by the Lyapunov optimization theory, associated with the flow control in transport layer and the power allocation in physical (PHY) layer, respectively. For avoiding the signaling overhead, outdated dynamic information, and scalability issues, the distributed resource allocation method is developed for solving the two subproblems based on the primal-dual decomposition theory. After that, the adaptive resource allocation algorithm is developed to accommodate the timevarying wireless network only according to the current network state information, i.e. the queue state information (QSI) at radio access networks (RAN) and the channel state information (CSI) of RANs-UE links. The tradeoff between network utility and delay is derived, where the increase of delay is approximately linear in V and the increase of network utility is at the speed of 1/V with a control parameter V. Extensive simulations are presented to show the effectiveness of our proposed scheme.

A Study on the Geometric Optimization of Truss Structures by Decomposition Method (분할최적화 기법에 의한 트러스 구조물의 형상최적화에 관한 연구)

  • 김성완;이규원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.4
    • /
    • pp.73-92
    • /
    • 1987
  • Formulation of the geometric optimization for truss structures based on the elasticity theory turn out to be the nonlinear programming problem which has to deal with the cross-sectional area of the member and the coordinates of its nodes simultaneously. A few techniques have been proposed and adopted for the analysis of this nonlinear programming problem for the time being. These techniques, however, bear some limitations on truss shapes, loading conditions and design criteria for the practical application to real structures. A generalized algorithm for the geometric optimization of the truss structures, which can eliminate the above mentioned limitations, is developed in this study. The algorithm proposed utilizes the two-levels technique. In the first level which consists of two phases, the cross-sectional area of the truss member is optimized by transforming the nonlinear problem into SUMT, and solving SUMT utilizing the modified Newton Raphson method. In the second level, which also consists of two phases the geometric shape is optimized utillzing the unindirectional search technique of the Powell method which make it possible to minimize only the objective functlon. The algorithm proposed in this study is numerically tested for several truss structures with various shapes, loading conditions and design criteria, and compared with the results of the other algorithms to examine its applicability and stability. The numerical comparisons show that the two- levels algorithm proposed in this study is safely applicable to any design criteria, and the convergency rate is relatively fast and stable compared with other iteration methods for the geometric optimization of truss structures. It was found for the result of the shape optimization in this study to be decreased greatly in the weight of truss structures in comparison with the shape optimization of the truss utilizing the algorithm proposed with the other area optimum method.

  • PDF

On-demand Allocation of Multiple Mutual-compensating Resources in Wireless Downlinks: a Multi-server Case

  • Han, Han;Xu, Yuhua;Huang, Qinfei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.921-940
    • /
    • 2015
  • In this paper, we investigate the multi-resource allocation problem, a unique feature of which is that the multiple resources can compensate each other while achieving the desired system performance. In particular, power and time allocations are jointly optimized with the target of energy efficiency under the resource-limited constraints. Different from previous studies on the power-time tradeoff, we consider a multi-server case where the concurrent serving users are quantitatively restricted. Therefore user selection is investigated accompanying the resource allocation, making the power-time tradeoff occur not only between the users in the same server but also in different servers. The complex multivariate optimization problem can be modeled as a variant of 2-Dimension Bin Packing Problem (V2D-BPP), which is a joint non-linear and integer programming problem. Though we use state decomposition model to transform it into a convex optimization problem, the variables are still coupled. Therefore, we propose an Iterative Dual Optimization (IDO) algorithm to obtain its optimal solution. Simulations show that the joint multi-resource allocation algorithm outperforms two existing non-joint algorithms from the perspective of energy efficiency.

A study on the global optimization in the design of a camera lens-system (사진 렌즈계 설계에서 전역 최적화에 관한 연구)

  • Jung, Jung-Bok;Jang, Jun-Kyu;Choi, Woon-Sang;Jung, Su-Ja
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.121-127
    • /
    • 2001
  • While SVD and Gaussian elimination method were applied to the additive damped least squares(DLS), the convergence and the stability of the optimization process were examined in a triplet-type camera lens-system where the condition number is well conditioned. DLS with SVD method generated a suitable merit function but this merit function may be trapped in a local minimum by the nonlinearity of error function. Therefore, the least camera lens-system was further designed by the global optimization method is grid method, and this method is adopted to get merit function that convergent to global minimum without local minimum trapping.

  • PDF

Optimum design of steel frame structures considering construction cost and seismic damage

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.1-26
    • /
    • 2015
  • Minimizing construction cost and reducing seismic damage are two conflicting objectives in the design of any new structure. In the present work, we try to develop a framework in order to solve the optimum performance-based design problem considering the construction cost and the seismic damage of steel moment-frame structures. The Park-Ang damage index is selected as the seismic damage measure because it is one of the most realistic measures of structural damage. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. To improve the time efficiency of the proposed framework, three simplifying strategies are adopted: first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication; second, fitness approximation decreasing the number of fitness function evaluations; third, wavelet decomposition of earthquake record decreasing the number of acceleration points involved in time-history loading. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency's (FEMA) recommended seismic design specifications. The results from numerical application of the proposed framework demonstrate the efficiency of the framework in solving the present multi-objective optimization problem.

Joint FrFT-FFT basis compressed sensing and adaptive iterative optimization for countering suppressive jamming

  • Zhao, Yang;Shang, Chaoxuan;Han, Zhuangzhi;Yin, Yuanwei;Han, Ning;Xie, Hui
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.316-325
    • /
    • 2019
  • Accurate suppressive jamming is a prominent problem faced by radar equipment. It is difficult to solve signal detection problems for extremely low signal to noise ratios using traditional signal processing methods. In this study, a joint sensing dictionary based compressed sensing and adaptive iterative optimization algorithm is proposed to counter suppressive jamming in information domain. Prior information of the linear frequency modulation (LFM) and suppressive jamming signals are fully used by constructing a joint sensing dictionary. The jamming sensing dictionary is further adaptively optimized to perfectly match actual jamming signals. Finally, through the precise reconstruction of the jamming signal, high detection precision of the original LFM signal is realized. The construction of sensing dictionary adopts the Pei type fast fractional Fourier decomposition method, which serves as an efficient basis for the LFM signal. The proposed adaptive iterative optimization algorithm can solve grid mismatch problems brought on by undetermined signals and quickly achieve higher detection precision. The simulation results clearly show the effectiveness of the method.

Energy efficiency task scheduling for battery level-aware mobile edge computing in heterogeneous networks

  • Xie, Zhigang;Song, Xin;Cao, Jing;Xu, Siyang
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.746-758
    • /
    • 2022
  • This paper focuses on a mobile edge-computing-enabled heterogeneous network. A battery level-aware task-scheduling framework is proposed to improve the energy efficiency and prolong the operating hours of battery-powered mobile devices. The formulated optimization problem is a typical mixed-integer nonlinear programming problem. To solve this nondeterministic polynomial (NP)-hard problem, a decomposition-based task-scheduling algorithm is proposed. Using an alternating optimization technology, the original problem is divided into three subproblems. In the outer loop, task offloading decisions are yielded using a pruning search algorithm for the task offloading subproblem. In the inner loop, closed-form solutions for computational resource allocation subproblems are derived using the Lagrangian multiplier method. Then, it is proven that the transmitted power-allocation subproblem is a unimodal problem; this subproblem is solved using a gradient-based bisection search algorithm. The simulation results demonstrate that the proposed framework achieves better energy efficiency than other frameworks. Additionally, the impact of the battery level-aware scheme on the operating hours of battery-powered mobile devices is also investigated.

Asymmetric Joint Scheduling and Rate Control under Reliability Constraints in Cognitive Radio Networks (전파인지 네트워크에서 신뢰성 보장 비대칭 스케줄-데이터율 결합제어)

  • Nguyen, Hung Khanh;Song, Ju-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.7
    • /
    • pp.23-31
    • /
    • 2012
  • Resource allocation, such as joint rate control and scheduling, is an important issue in cognitive radio networks. However, it is difficult to jointly consider the rate control and scheduling problem due to the stochastic behavior of channel availability in cognitive radio networks. In this paper, we propose an asymmetric joint rate control and scheduling technique under reliability constraints in cognitive radio networks. The joint rate control and scheduling problem is formulated as a convex optimization problem and substantially decomposed into several sub-problems using a dual decomposition method. An algorithm for secondary users to locally update their rate that maximizes the utility of the overall system is also proposed. The results of simulations revealed that the proposed algorithm converges to a globally optimal solution.