• Title/Summary/Keyword: decomposition of Emissions

Search Result 73, Processing Time 0.025 seconds

Solid Waste from Swine Wastewater as a Fuel Source for Heat Production

  • Park, Myung-Ho;Kumar, Sanjay;Ra, ChangSix
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.11
    • /
    • pp.1627-1633
    • /
    • 2012
  • This study was to evaluate the feasibility of recycling the solids separated from swine wastewater treatment process as a fuel source for heat production and to provide a data set on the gas emissions and combustion properties. Also, in this study, the heavy metals in ash content were analyzed for its possible use as a fertilizer. Proximate analysis of the solid recovered from the swine wastewater after flocculation with organic polymer showed high calorific (5,330.50 kcal/kg) and low moisture (15.38%) content, indicating that the solid separated from swine wastewater can be used as an alternative fuel source. CO and NOx emissions were found to increase with increasing temperature. Combustion efficiency of the solids was found to be stable (95 to 98%) with varied temperatures. Thermogravimetry (TG) and differential thermal analysis (DTA) showed five thermal effects (four exothermic and one endothermic), and these effects were distinguished in three stages, water evaporation, heterogeneous combustion of hydrocarbons and decomposition reaction. Based on the calorific value and combustion stability results, solid separated from swine manure can be used as an alternative source of fuel, however further research is still warranted regarding regulation of CO and NOx emissions. Furthermore, the heavy metal content in ash was below the legal limits required for its usage as fertilizer.

LMDI Decomposition Analysis on Characteristics of Greenhouse Gas Emission from the Line of Railroad in Korea (LMDI 분해 분석을 이용한 국내 철도 노선별 온실가스 배출 특성 분석)

  • Lee, Jae-Hyung;Lim, Jee-Jae;Kim, Yong-Ki;Lee, Jae-Young
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.286-293
    • /
    • 2012
  • Korean government is enforcing 'Greenhouse gas target management' in order to achieve Greenhouse gas reduction target. To attain Greenhouse gas reduction target, companies in Korea must establish their GHG inventory system and analysis their GHG emissions characteristics for deduction of mitigation measures. LMDI(Log Mean Divisia Index) decomposition analysis is widely used to understand characteristics of GHG emission and energy consumption. In this paper, the characteristics of GHG emission from the line of railroad in Korea is respectively analyzed in terms of conversion effect, intensity effect, production effect and distance effect. Data of railroad GHG emission from 2000 to 2007 are used. As a result, total effect of railroad's GHG emission is $96,813tCO_2eq$. Production effect ($39,865tCO_2eq$) and distance effect ($327,923tCO_2eq$) affect increase of railroad GHG emissions while Conversion effect ($-158,161tCO_2eq$) and intensity effect ($-112,814tCO_2eq$) influence decrease of the emissions.

Research on the Environmental Effects and Green Development Path of South Korean Foreign Trade

  • Le, Cao
    • Journal of Korea Trade
    • /
    • v.24 no.7
    • /
    • pp.93-106
    • /
    • 2020
  • Purpose - This paper aims to examine the environmental effects of South Korean foreign trade, and the changing relationship between industrial "three wastes" emissions and foreign trade. Design/methodology - Based on time series data of South Korean foreign trade and industrial "three wastes" from 2009 to 2019, a VAR model was used to analyze the long-term internal links and dynamic changes between foreign trade and environmental pollution. Findings - Variance decomposition analysis shows that for the three types of pollutants, self-impact contributes the most to the variance decomposition. It follows that South Korean foreign trade has a certain negative impact on the environment, and this impact has a certain sustainability. Originality/value - This paper contributes to the study on the relationship between foreign trade and environmental pollution. It theoretically proposes a coordinated development path for foreign trade development and green development based on the environmental impact of foreign trade, to provide a reference for the development of collaborative promotion.

A study on γ-Al2O3 Catalyst for N2O Decomposition (N2O 분해를 위한 γ-Al2O3 촉매에 관한 연구)

  • Eun-Han Lee;Tae-Woo Kim;Segi Byun;Doo-Won Seo;Hyo-Jung Hwang;Jueun Baek;Eui-Soon Jeong;Hansung Kim;Shin-Kun Ryi
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.126-134
    • /
    • 2023
  • Direct catalytic decomposition is a promising method for controlling the emission of nitrous oxide (N2O) from the semiconductor and display industries. In this study, a γ-Al2O3 catalyst was developed to reduce N2O emissions by a catalytic decomposition reaction. The γ-Al2O3 catalyst was prepared by an extrusion method using boehmite powder, and a N2O decomposition test was performed using a catalyst reactor that was approximately 25.4 mm (1 in) in diameter packed with approximately 5 mm of catalysts. The N2O decomposition tests were carried out with approximately 1% N2O at 550 to 750 ℃, an ambient pressure, and a GHSV=1800-2000 h-1. To confirm the N2O decomposition properties and the effect of O2 and steam on the N2O decomposition, nitrogen, air, and air and steam were used as atmospheric gases. The catalytic decomposition tests showed that the 1% N2O had almost completely disappeared at 700 ℃ in an N2 atmosphere. However, air and steam decreased the conversion rate drastically. The long term stability test carried out under an N2 atmosphere at 700 ℃ for 350 h showed that the N2O conversion rate remained very stable, confirming no catalytic activity changes. From the results of the N2O decomposition tests and long-term stability test, it is expected that the prepared γ-Al2O3 catalyst can be used to reduce N2O emissions from several industries including the semiconductor, display, and nitric acid manufacturing industry.

An e-SAM Approach to the Analysis of Energy Consumption and CO2 Emissions in Korean Industry (환경사회계정행렬(e-SAM)을 이용한 산업활동의 환경 파급효과 분석)

  • Park, Chang-Gui;Lee, Kihoon
    • Journal of Environmental Policy
    • /
    • v.12 no.1
    • /
    • pp.101-123
    • /
    • 2013
  • This research aims to find out the existence of considerable induced effect that the conventional I-O model cannot. First, we construct an environmental Social Accounting Matrix for Korea by combining statistics on the Korean GDP and I-O with physical data on the fossil energy consumption and $CO_2$ emissions. The impacts of productive activities on fossil energy consumption and $CO_2$ emissions are evaluated by calculating the e-SAM multipliers. By applying decomposition technique further, we get direct, indirect, and induced effects of production activities by industry. The result of decomposing the e-SAM shows that while the direct effect of the electricity industry is large, its indirect effect is very small. In the case of the primary metal industry, both the direct and the indirect influence of this industry were very large. On the contrary, in case of the service industry, the induced effect of fossil energy consumption was as high as 50% of the gross effect. These results suggest that different energy policies should be established for different industries. Also, the findings show the e-SAM model is better than I-O model in analyzing implications of policies on energy use in the economy.

  • PDF

Calcination Properties of Cement Raw Meal and Limestone with Oxidation/Reduction Condition (산화/환원 소성분위기에서 석회석 및 시멘트 원료물질의 소성거동 특성)

  • Moon, Ki-Yeon;Choi, Moon-Kwan;Cho, Jin-Sang;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.64-72
    • /
    • 2020
  • When the multi-stage combustion process is applied to the cement kiln to reduce nitrogen oxide emissions in the cement industry, oxidation/reduction section that can increase combustion efficiency by reducing NOx to NO and completely burning unburned materials is essential In this study, when applied the oxidation/reduction system of the cement kiln preheater and calciner, the optimal oxidation/reduction calcination crisis that can secure the quality stability of the final product, cement clinker, was to be observed macroscopically, and the mass change of raw materials according to the burning conditions, decarbonation rate, and calcination rate were investigated. The results showed that the thermal decomposition of raw materials tends to be promoted in the oxidation condition rather than in the reduction condition, and that the thermal decomposition of limestone, which has a relatively high CaO content, is carried out later than that of cement raw meal, which is thought to be caused by the CO2 fractionation in the kiln. The thermal decomposition properties of raw materials according to oxidation/reducing burning condition showed a relatively large difference in temperature range lower than normal limestone themal decomposition temperature, which is thought to be expected to improve the thermal efficiency of raw materials according to the formation of oxidation condition in the section 750℃ of burning temperature. However, for this study, lab scale. Because there is a difference from the field process as a scale study, it is deemed necessary to verify the actual test results of the pilot scale.

Experimental Study on Characteristics of Ammonia Conversion Rate of Urea Aqueous Solution in 250℃ Exhaust Pipe (250℃ 이하 배기관에서 우레아 수용액의 암모니아 전환율 특성에 관한 실험적 연구)

  • Ku, Kun Woo;Park, Hong Min;Hong, Jung Goo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.177-182
    • /
    • 2015
  • The NOx emissions from diesel engines and industrial boilers are a major cause of environmental pollution. The selective catalytic reduction of urea is an aftertreatment technology that is widely used for the reduction of NOx emissions. The objective of this study was to investigate the characteristics of the thermal decomposition of a urea aqueous solution using laboratory-scale experimental equipment under conditions similar to those of marine diesel engines. A 40 wt. urea aqueous solution was used in this study. It was found that the total conversion rate varied with the inflow gas conditions and flow rates of the urea aqueous solution. In addition, there were conversion rate differences between NH3 and HNCO. At inflow gas temperature conditions of $210^{\circ}C$ and $250^{\circ}C$, the $NH_3$ conversion rate was found to be higher than that of the HNCO, depending on the residence time.

Accounting for Early Action with Consideration of Energy Efficiency Improvements (에너지효율개선을 고려한 온실가스 감축 조기행동 인정방안)

  • Kim, Changseob
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.158-169
    • /
    • 2014
  • In the context of $CO_2$ mitigation, how early reduction action taken by individual companies previous to the actual regulated period is implemented at the free allocation process, remains one of the major issues. This article considered efficiency factor as a criterion for the early action. Then the emissions allowance allocated was compared and analyzed with and without the consideration of early action. In the cases of manufacturing sectors of Korea for the period 2001~2009, it is shown that emissions in the all industries fell by their efficiency factors. The amounts of emissions allowance allocated to the all industries except petro-chemistry are increased when EA is counted in the allocation process.

The Study of the Effects of Nonthermal Plasma-Photocatalyst combined Reactor on Hydrocarbon Decomposition and Reduction during Cold Start and Warm-up in a SI Engine (스파크 점화기관 냉간 시동시 플라즈마 광촉매 복합장치에 의한 탄화수소 화합물 저감에 관한 실험적 연구)

  • Lee, Taek-Heon;Chun, Kwang-Min;Chun, Bae-Hyeock;Shin, Young-Gy
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.169-178
    • /
    • 2001
  • Among the recent research ideas to reduce hydrocarbon emissions emitted from SI engines till light-off of catalyst since cold start are those exploiting non-thermal plasma technique and photo-catalyst that draws recent attention by virtue of its successful application to practical use to clean up the atmosphere using the feature of its relative independence on temperature. Based on the previous research results obtained with model exhaust gases using an experimental emissions reduction system that utilizes the non-thermal plasma and photo-catalyst technique, further investigation was conducted on a production N/A 1.5 liter DOHC engine during cold start to warm-up. For the effects of non-thermal plasma-photocatalyst combined reactor, 10% concentration reduction was achieved with the fuel component paraffins, and the large increase in non-fuel paraffinic components and acetylene concentrations were similar to those of base condition. However the absolute value was locally a bit higher than those of base condition since the products was made from the dissociation and decomposition of highly branched paraffins by plasma-photocatalyst reactor. Olefinic components were highly decomposed by about 75%, due to these excellent decompositions of olefins which have relatively high MIR values, and the SR value was 1.87 that is 30% reduction from that of base condition, then, the photochemical reactivity was lowered.

  • PDF

Basic Study of Behavior Characteristics of Emulsified Fuel with Fuel Design (연료설계에 의한 에멀젼연료의 거동특성에 관한 기초연구)

  • Yeom, Jeong-Kuk
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.22-28
    • /
    • 2015
  • A compression ignition type of diesel engine makes fuel efficiency better and $CO_2$ in the exhaust gas lower. Also it is suitable to apply alternative fuels(blended fuel) to the engine. The objective of this study is the emissions reduction of diesel engine with EF(Emulsified fuel). The emulsified fuel consists of diesel and peroxide($H_2O_2$) and Soot reduction without worsening of NOx emissions can be achieved by using thermal decomposition of the peroxide, i.e. the chemical effect of the OH radical in actual engine. For manufacturing emulsified fuel, a surfactant which is comprised of span 80 and tween 80 mixed as 9:1, was mixed with a fixed with 3% of the total volume in the emulsion fuel. In addition, considering the mixing ratio of the surfactant, the mixing ratio of $H_2O_2$ in the emulsified fuel was set as EF0, EF2, EF12, EF22, EF32, and EF42, respectively. Consequently, this study aims to obtain the optimization of fuel design(mixing) for the emulsified fuel applying to the diesel engine.