• Title/Summary/Keyword: decolorization activity

Search Result 124, Processing Time 0.026 seconds

Enterobacter cloacae MG82에 의한Triphenylmethane흡수 특성과 탈색효소의 세포내 위치

  • Jeong, Min-Seon;Kwak, Soon-Jun;Kim, Byung-Hong;Chung, Young-Gun;Kang, Sa-Ouk;Min, Kyung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.37-43
    • /
    • 1997
  • Triphenylmethane was decolorized rapidly by enterbacter cloacae MG 82 at initial reaction time. The spheroplast showed higher activity of triphenylmentane decolorization than that of intact cell suspension. The outer part of the bacterial cell envelope and the peptidoglycan are important for the function of transport barrier of triphenylmethane. In intact cell, decolorization activity was higher at 37$\circ $C than at $\circ $C, indicating that triphenylmethane decolorization is due to the enzyme reaction. Culture filtrate showed no decolorization activity, while cell-free extract appeared high activity of 1.45 units, clearly showing that decolorization activity was due to the cell-free extract. Comparing decolorization activities of cell fractions, it was found that decolorization activity was located at the compartment of cytoplasmic membrane. The enzyme activity was also shown to be Mg$^{++}$-dependent. The optimum pH and temperature of enzyme activity were 7.0 and 50$\circ $C, respectively. The thermostability of this enzyme at 35$\circ $C was kept to 58% for 3 hours.

  • PDF

Effect of Culture Parameters on the Decolorization of Remazol Brilliant Blue R by Pleurotus ostreatus

  • Kim, Bok-Sun;Ryu, Seong-Joo;Shin, Kwang-Soo
    • Journal of Microbiology
    • /
    • v.34 no.1
    • /
    • pp.101-104
    • /
    • 1996
  • The influences of culture parameters on the decolorization of anthron-type dye, Remazol brilliant blue R(RBBR) by Pleurotus ostreatus were studied in defined media. In the decolorization, 1-10 mM nutrient nitrogen and 40 mM glucose were effective whereas agitation and Tween 80 were not suitable. The decolorization occurred and the activity of extracellular peroxidase was detected during the stationary phase.

  • PDF

Screening of Wood-Rotting Fungi for Efficient Decolorization of Draft Pulp Bleaching Effluents

  • Lee, Seon-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.95-100
    • /
    • 1999
  • In order to find fungi having high treatment activity of kraft pulp bleaching (E1) effluent without any additional nutrietns, 124 strains of white-rot fungi were isolated from decayed wood samples. The author isolated five fungi(KS-62, MZ-400 , YK-719, YK-472 and Phanerochaete sordida YK-624) having high-decolorization activity of the E1 effluent. Particularly, the fugus KS-62 show the high effect of the decolorization and the degradation of the chlorinated lignin in the E1 , effluent compared with Coriolus versicolor and Phanerochaete chrysosporium.

  • PDF

Decolorizing Characteristics of Crystal Violet by Enterobacter cloace MG82. (Enterobacter cloacae MG82에 의한 Crystal Violet의 탈색특성)

  • 정민선;지원대;김병홍;정영건
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.269-274
    • /
    • 1998
  • Decolorizing characteristics of crystal violet by Enterobacter cloace MG82, which can decolorize rapidly triphenylmethane dyes, were investigated. The higher growth and decolorization activity was shown at big ratio of dissolved oxygen in the medium. The decolorization activity of crystal violet revealed highest at the middle of lag phase. As the concentration of crystal violet was higher, the growth of E. cloacae MG82 and decolorizing activity of crystal violet by this strain were worse. The maximum concentration of crystal violet at which E. cloacae MG82 be able to grow was 375 ${\mu}$M. E. cloacae MG82 was not able to use the crystal violet itself as a sole carbon source. So, it was shown that growth of E. cloacae MG82 and decolorization activity of crystal violet by this strain needed addition of another energy sources except this dye.

  • PDF

Characterization of Dye Decolorization in Cell-Free Culture Broth of Trametes versicolor CBR43

  • Ryu, Hyun;Ryu, Hee Wook;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.155-160
    • /
    • 2017
  • The dye decolorization rate in a cell-free culture broth of the white-rot fungus Trametes versicolor CBR43 was studied, including the effects of inhibitors of NaCl, Zn(II), and Cd(II) on dye decolorization activity. The maximum rates of dye decolorization in cell-free culture broth were 1,410, 44.7, 41.2, and $0.19{\mu}mol{\cdot}l^{-1}{\cdot}min^{-1}$ for Acid Blue 62, Acid Black 175, Reactive Blue 4, and Acid Red 114, respectively. The inhibition effects of NaCl, Zn(II), and Cd(II) on dye decolorization were quantitatively compared using the half maximal inhibition concentration ($IC_{50}$), which indicates the concentration of an inhibitor required for 50% inhibition. Based on $IC_{50}$ values, dye decolorization in the cell-free culture broth of CBR43 was most potently inhibited by Cd(II), whereas the inhibitory effect of NaCl was relatively low. The dye decolorization rates and $IC_{50}$ data can be used in the design and development of a dye-wastewater treatment process using T. versicolor CBR43 and its operating factors.

The Effects of Wood Rotting Fungi and Laccase on Destaining of Dyes and KP Bleaching Effluen

  • Cho, Nam-Seok;Park, J.M.;Choi, T.H.;Matuszewska, A.;Jaszek, M.;Grzywnowicz, K.;Malarczyk, E.;Trojanowski, K.;Leonowicz, A.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.72-79
    • /
    • 1999
  • The ability of several wood rotting fungi for decolorization of two anthracene derivatives, Carminic acid (CA) and Remazol brilliant blue R (RBBR), and hardwood KP bleaching liquor (BL) as well as laccase activities in these fungi were studied. The enzyme activity appeared exclusively in fungi destaining RBBR and CA, but in the case of BL, such relationship was not observed. The laccase enzyme was released into the decolorization media and its inducible (but not constitutive) forms shown destaining activity. The purified inducible forms of Kuehneromyces mutabilis and Pleurotus ostreatus laccase destained CA. Thus the possible differentiation between specificity of particular LAC forms was confirmed. In addition the nitrogen starvation induced both laccase and CA destaining activities, but the increase was higher for decolorization of CA than LAC activity. Probably LAC would be only partly responsible for decolorization of this dye. This results suggested that purified LACs decolorize CA, however its destaining activities were considerably lower than the activities on syringaldazine.

  • PDF

Efficient Recovery of Lignocellulolytic Enzymes of Spent Mushroom Compost from Oyster Mushrooms, Pleurotus spp., and Potential Use in Dye Decolorization

  • Lim, Seon-Hwa;Lee, Yun-Hae;Kang, Hee-Wan
    • Mycobiology
    • /
    • v.41 no.4
    • /
    • pp.214-220
    • /
    • 2013
  • This study was conducted in order to perform efficient extraction of lignocellulolytic enzymes amylase (EC 3.2.1.1), cellulase (EC 3.2.1.4), laccase (EC 1.10.3.2), and xylanase (EC 3.2.1.8) from spent mushroom compost (SMC) of Pleurotus ostreatus, P. eryngii, and P. cornucopiae. Optimal enzyme recovery was achieved when SMCs were extracted with 50 mM sodium citrate (pH 4.5) buffer at $4^{\circ}C$ for 2 hr. Amylase, cellulase, and xylanase activities showed high values in extracts from P. ostreatus SMC, with 2.97 U/g, 1.67 U/g, and 91.56 U/g, respectively, whereas laccase activity and filter paper degradation ability were highest in extracts from P. eryngii SMC, with values of 9.01 U/g and 0.21 U/g, respectively. Enzymatic activities varied according to the SMCs released from different mushroom farms. The synthetic dyes remazol brilliant blue R and Congo red were decolorized completely by the SMC extract of P. eryngii within 120 min, and the decolorization ability of the extract was comparable to that of 0.3 U of commercial laccase. In addition, laccase activity of the SMC extract from P. eryngii was compared to that of commercial enzymes or its industrial application in decolorization.

Decolorization of Dye and Molasses by Continuous and Semi-Continuous Jar-Fermentor Cultures of Geotrichum candidum Dec 1

  • Kim, S.J.;Kim, M.J.;Shoda, M.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.306-312
    • /
    • 2006
  • Two culture modes, continuous and semi-continuous, of the decolorization fungus, Geotrichum candidum Dec 1, were compared to obtain a high treatment efficiency of molasses decolorization and a large productivity of peroxidase (DyP) to simultaneously decolorize dyes and molasses. The continuous culture of G. candidum Dec 1 using a 5-I jar-fermentor showed high DyP activity at a low dilution ratio of $0.005h^{-1}$, and decolorization ratio of molasses of 80% was obtained concomitantly. Therefore, a semi-continuous culture was performed by repeated refill and draw. In this mode, approximately 1.5 liters of the culture broth was replaced per cycle when the decolorization ratio of molasses was near 80%. The molasses medium (1.0 liter per day) was treated and the peroxidase productiveity in the drawn culture broth was 26.6U/day, whereas the peroxidase productiveity was 17.9U/day in the continuous culture with a dilution rate of $0.005h^{-1}$. The semi-continuous treatment system was an efficient decolorization method for the strain, G. candidum Dec 1.

Laccase Activity and Azo Dye Decolorization Potential of Podoscypha elegans

  • Pramanik, Satadru;Chaudhuri, Sujata
    • Mycobiology
    • /
    • v.46 no.1
    • /
    • pp.79-83
    • /
    • 2018
  • Azo dyes containing effluents from different industries pose threats to the environment. Though there are physico-chemical methods to treat such effluents, bioremediation is considered to be the best eco-compatible technique. In this communication, we discuss the decolorization potentiality of five azo dyes by Podoscypha elegans (G. Mey.) Pat., a macro-fungus, found growing on the leaf-litter layer of Bethuadahari Wildlife Sanctuary in West Bengal, India. The fungus exhibited high laccase and very low manganese peroxidase activities under different culture conditions. Decolorization of five high-molecular weight azo dyes, viz., Orange G, Congo Red, Direct Blue 15, Rose Bengal and Direct Yellow 27 by the fungus was found to be positive in all cases. Maximum and minimum mean decolorization percentages were recorded in Rose Bengal (70.41%) and Direct Blue 15 (24.8%), respectively. This is the first record of lignolytic study and dye decolorization by P. elegans.

Effect of Cadium Ions on the Activity of Fungal Laccase and Its Decolorization of Dye, RBBR

  • Jarosz-Wilkolazka, A.;Malarczyk, E.;Leonowicz, A.;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.14-22
    • /
    • 2004
  • The effect of cadmium ions on ligninolytic and decolourizing activities in cultures of two white-rot fungi, Cerrena unicolor and Trametes versicolor, were examined. Cadmium was added to the shallow stationary cultures growing on a liquid mineral medium. Both examined strains sorbed Cd ions in the first 24 hr of incubation. An appreciable stimulation of the activity of extracellular laccase (LAC) and inhibition of the extracellular manganese-dependent peroxidase (MnP) were simultaneously observed when 25 mgL-1 and 50 mgL-1 of cadmium ions were added to the cultures. On the other hand, the addition of cadmium ions also resulted in stimulating the decolorization activity of C. unicolor to decolorize Remazol Brilliant Blue R (RBBR) in the cultures, but decreasing it in the culture of T. versicolor, which is compared to the inhibition of MnP activity in this fungus. Our data indicate that the presence of Cd(II) ions can affect the ligninolytic activity of white-rot fungi. It was found that C. unicolor is a strain resistant to the presence of Cd ions in the liquid culture media, and has a potential to use this strain for bioremediation of sites contaminated with both heavy metals and aromatic pollutants.