Decolorization of Dye and Molasses by Continuous and Semi-Continuous Jar-Fermentor Cultures of Geotrichum candidum Dec 1

  • Kim, S.J. (Department of Civil, Geosystem and Environmental Engineering, College of Engineeriing, Chonnam National University) ;
  • Kim, M.J. (Department of Civil, Geosystem and Environmental Engineering, College of Engineeriing, Chonnam National University) ;
  • Shoda, M. (Research Laboratory of Resources Utilization, Tokyo Institute of Technology)
  • Published : 2006.08.30

Abstract

Two culture modes, continuous and semi-continuous, of the decolorization fungus, Geotrichum candidum Dec 1, were compared to obtain a high treatment efficiency of molasses decolorization and a large productivity of peroxidase (DyP) to simultaneously decolorize dyes and molasses. The continuous culture of G. candidum Dec 1 using a 5-I jar-fermentor showed high DyP activity at a low dilution ratio of $0.005h^{-1}$, and decolorization ratio of molasses of 80% was obtained concomitantly. Therefore, a semi-continuous culture was performed by repeated refill and draw. In this mode, approximately 1.5 liters of the culture broth was replaced per cycle when the decolorization ratio of molasses was near 80%. The molasses medium (1.0 liter per day) was treated and the peroxidase productiveity in the drawn culture broth was 26.6U/day, whereas the peroxidase productiveity was 17.9U/day in the continuous culture with a dilution rate of $0.005h^{-1}$. The semi-continuous treatment system was an efficient decolorization method for the strain, G. candidum Dec 1.

Keywords

References

  1. Kim, S. J., K. Ishikawa, M. Hirai, and M. Shoda (1995) Characteristics of a newly isolated fungus, Geotrichum candidum Dec 1, which decolorizes various dyes. J. Ferment. Bioeng. 79: 601-607 https://doi.org/10.1016/0922-338X(95)94755-G
  2. Kim, S. J. and M. Shoda (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Appl. Environ. Microbiol. 65: 1029-1035
  3. Kim, S. J., N. Suzuki, Y. Uematsu, and M. Shoda (2001) Characterization of aryl alcohol oxidase produced by dyedecolorizing fungus, Geotrichum candidum Dec 1. J. Biosci. Bioeng. 91: 166-172 https://doi.org/10.1016/S1389-1723(01)80060-8
  4. Kim, S. J. and M. Shoda (1999) Decolorization of molasses and a dye by a newly isolated strain of the fungus Geotrichum candidum Dec 1. Biotechnol. Bioeng. 62: 114-119 https://doi.org/10.1002/(SICI)1097-0290(19990105)62:1<114::AID-BIT13>3.0.CO;2-T
  5. Kim, S. J. and M. Shoda (1998) Decolorization of molasses by a new isolate of Geotrichum candidum in a jar fermenter. Biotechnol. Tech. 12: 497-499 https://doi.org/10.1023/A:1008824119174
  6. Perie, F. H. and M. H. Gold (1991) Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl. Environ. Microbiol. 57: 2240-2245
  7. Sayadi, S. and R. Ellouz (1995) Roles of lignin peroxidase and manganese peroxidase from Phanerochaete chrysosporium in the decolorization of olive mill wastewaters. Appl. Environ. Microbiol. 61: 1098-1103
  8. Goszczynski, S., A. Paszczynski, M. B. Pasti-Grigsby, R. L. Crawford, and D. L. Crawford (1994) New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus. J. Bacteriol. 176: 1339-1347 https://doi.org/10.1128/jb.176.5.1339-1347.1994
  9. Chivukula, M. and V. Renganathan (1995) Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl. Environ. Microbiol. 61: 4374-4377
  10. Woo, S. H., J. S. Cho, B. S. Lee, and E. K. Kim (2004) Decolorization of melanin by lignin peroxidase from Phanerochaete chrysosporium. Biotechnol. Bioprocess Eng. 9: 256-260 https://doi.org/10.1007/BF02942340
  11. Venkatadri, R. and R. L. Irvine (1990) Effect of agitation on ligninase activity and ligninase production by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 56: 2684-2691
  12. Kirkpatrick, N. and J. M. Palmer (1987) Semi-continuous ligninase production using foam-immobilised Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 27: 129-133
  13. Linko, S. (1988) Continuous production of lignin peroxidase by immobilized Phanerochaete chrysosporium in a pilot scale bioreactor. J. Biotechnol. 8: 163-170 https://doi.org/10.1016/0168-1656(88)90078-8
  14. Pallerla, S. and R. P. Chambers (1995) Continuous decolorization and AOX reduction of bleach plant effluents by free and immobilized Trametes versicolor. J. Environ. Sci. Health A30: 423-437
  15. Bonnarme, P., M. Delattre, H. Drouet, G. Corrieu, and M. Asther (1993) Toward a control of lignin and manganese peroxidases hypersecretion by Phanerochaete chrysosporium in agitated vessels: Evidence of the superiority of pneumatic bioreactors on mechanically agitated bioreactors. Biotechnol. Bioeng. 41: 440-450 https://doi.org/10.1002/bit.260410407
  16. Leisola, M. S. A., U. Thanei-Wyss, and A. Fiechter (1985) Strategies for production of high ligninase activities by Phanerochaete chrysosporium. J. Biotechnol. 3: 97-100 https://doi.org/10.1016/0168-1656(85)90010-0
  17. Bonnarme, P., M. Delattre, G. Corrieu, and M. Asther (1991) Peroxidase secretion by pellets or immobilized cells of Phanerochaete chrysosporium BKM-F-1767 and INA-12 in relation to organelle content. Enzyme Microb. Technol. 13: 727-733 https://doi.org/10.1016/0141-0229(91)90051-B
  18. Leisola, M. S. A. and A. Fiechter (1985) New trend in lignin biodegradation. Adv. Biotechnol. Proc. 5: 59-89
  19. Pinelli, D., R. A. Gonzalez-Varay, D. Matteuzzi, and F. Magelli (1997) Assessment of kinetic models for the production of L- and D-lactic acid isomers by Lactobacillus casei DMS 20011 and Lactobacillus coryniformis DMS 20004 in continuous fermentation. J. Ferment. Bioeng. 83: 209-212 https://doi.org/10.1016/S0922-338X(97)83586-6
  20. Kirkpatrick, N. and J. M. Palmer (1989) A natural inhibitor of lignin peroxidase activity from Phanerochaete chrysosporium, active at low pH and inactivated by divalent metal ions. Appl. Microbiol. Biotechnol. 30: 305-311
  21. Wittier, R., H. Baumgartl, D. W. Lübbers, and K. Schügerl (1986) Investigation of oxygen transfer into Penicillium chrysogenum pellets by microprobe measurements. Biotechnol. Bioeng. 28: 1024-1036 https://doi.org/10.1002/bit.260280713
  22. Linko, Y.-Y., M. Leisola, N. Lindholm, J. Troller, P. Linko, and A. Fiechter (1986) Continuous production of lignin peroxidase by Phanerochaete chrysosporium. J. Biotechnol. 4: 283-291 https://doi.org/10.1016/0168-1656(86)90038-6
  23. Linko, S. (1988) Production and characterization of extracellular lignin peroxidase from immobilized Phanerochaete chrysosporium in a 10-l bioreactor. Enzyme Microb. Technol. 10: 410-417 https://doi.org/10.1016/0141-0229(88)90035-X
  24. Capdevila, C., G. Corrieu, and M. Asther (1989) A feedharvest culturing method to improve lignin peroxidase by Phanerochaete chrysosporium INA-12 immobilized on polyurethane foam. J. Ferment. Bioeng. 68: 60-63 https://doi.org/10.1016/0922-338X(89)90217-1
  25. Ryu, B. H. (2004) Semicontinuous decolorization of azo dyes by rotating disc contactor immobilized with Aspergillus sojae B-10. Biotechnol. Bioprocess Eng. 9: 309-312 https://doi.org/10.1007/BF02942349