• Title/Summary/Keyword: decoding scheme

Search Result 396, Processing Time 0.025 seconds

High Throughput Turbo Decoding Scheme (높은 처리율을 갖는 고속 터보 복호 기법)

  • Choi, Jae-Sung;Shin, Joon-Young;Lee, Jeong-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.7
    • /
    • pp.9-16
    • /
    • 2011
  • In this paper, various kinds of high throughput turbo decoding schemes are introduced, and a new turbo decoding scheme using the advantages of each scheme is proposed. The proposed scheme uses the decoding structure of double flow scheme, sliding window scheme and shuffled turbo decoding scheme. Simulation results show that the proposed scheme offers a BER performance equivalent to those of existing turbo decoding schemes with less clock cycles. We also show that the required memory can be reduced by choosing proper size of sliding window. Consequently, we can design a high throughput turbo decoder requiring low power and low area.

Nonuniform Encoding and Hybrid Decoding Schemes for Equal Error Protection of Rateless Codes

  • Lim, Hyung Taek;Joo, Eon Kyeong
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.719-726
    • /
    • 2012
  • Messages are generally selected with the same probability in the encoding scheme of rateless codes for equal error protection. In addition, a belief propagation (BP) decoding scheme is generally used because of the low computational complexity. However, the probability of recovering a new message by BP decoding is reduced if both the recovered and unrecovered messages are selected uniformly. Thus, more codeword symbols than expected are required for the perfect recovery of message symbols. Therefore, a new encoding scheme with a nonuniform selection of messages is proposed in this paper. In addition, a BP-Gaussian elimination hybrid decoding scheme that complements the drawback of the BP decoding scheme is proposed. The performances of the proposed schemes are analyzed and compared with those of the conventional schemes.

An FPGA Design of High-Speed Turbo Decoder

  • Jung Ji-Won;Jung Jin-Hee;Choi Duk-Gun;Lee In-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.450-456
    • /
    • 2005
  • In this paper, we propose a high-speed turbo decoding algorithm and present results of its implementation. The latency caused by (de)interleaving and iterative decoding in conventional MAP turbo decoder can be dramatically reduced with the proposed scheme. The main cause of the time reduction is to use radix-4, center to top, and parallel decoding algorithm. The reduced latency makes it possible to use turbo decoder as a FEC scheme in the real-time wireless communication services. However the proposed scheme costs slight degradation in BER performance because the effective interleaver size in radix-4 is reduced to an half of that in conventional method. To ensure the time reduction, we implemented the proposed scheme on a FPGA chip and compared with conventional one in terms of decoding speed. The decoding speed of the proposed scheme is faster than conventional one at least by 5 times for a single iteration of turbo decoding.

A Novel Parallel Viterbi Decoding Scheme for NoC-Based Software-Defined Radio System

  • Wang, Jian;Li, Yubai;Li, Huan
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.767-774
    • /
    • 2013
  • In this paper, a novel parallel Viterbi decoding scheme is proposed to decrease the decoding latency and power consumption for the software-defined radio (SDR) system. It implements a divide-and-conquer approach by first dividing a block into a series of subblocks, then performing independent Viterbi decoding for each subsequence, and finally merging the surviving subpaths into the final path. Moreover, a network-on-chip-based SDR platform is used to evaluate the performance of the proposed parallel Viterbi decoding scheme. The experiment results show that our scheme can speed up the Viterbi decoding process without increasing the BER, and it performs better than the current state-of-the-art methods.

New Decoding Scheme for LDPC Codes Based on Simple Product Code Structure

  • Shin, Beomkyu;Hong, Seokbeom;Park, Hosung;No, Jong-Seon;Shin, Dong-Joon
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.351-361
    • /
    • 2015
  • In this paper, a new decoding scheme is proposed to improve the error correcting performance of low-density parity-check (LDPC) codes in high signal-to-noise ratio (SNR) region by using post-processing. It behaves as follows: First, a conventional LDPC decoding is applied to received LDPC codewords one by one. Then, we count the number of word errors in a predetermined number of decoded codewords. If there is no word error, nothing needs to be done and we can move to the next group of codewords with no delay. Otherwise, we perform a proper post-processing which produces a new soft-valued codeword (this will be fully explained in the main body of this paper) and then apply the conventional LDPC decoding to it again to recover the unsuccessfully decoded codewords. For the proposed decoding scheme, we adopt a simple product code structure which contains LDPC codes and simple algebraic codes as its horizontal and vertical codes, respectively. The decoding capability of the proposed decoding scheme is defined and analyzed using the parity-check matrices of vertical codes and, especially, the combined-decodability is derived for the case of single parity-check (SPC) codes and Hamming codes used as vertical codes. It is also shown that the proposed decoding scheme achieves much better error correcting capability in high SNR region with little additional decoding complexity, compared with the conventional LDPC decoding scheme.

A New Iterative LT Decoding Algorithm for Binary and Nonbinary Galois Fields

  • Mao, Yuexin;Huang, Jie;Wang, Bing;Huang, Jianzhong;Zhou, Wei;Zhou, Shengli
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.411-421
    • /
    • 2013
  • Digital fountain codes are record-breaking codes for erasure channels. They have many potential applications in both wired and wireless communications. Most existing digital fountain codes operate over binary fields using an iterative belief-propagation (BP) decoding algorithm. In this paper, we propose a new iterative decoding algorithm for both binary and nonbinary fields. The basic form of our proposed algorithm considers both degree-1 and degree-2 check nodes (instead of only degree-1 check nodes as in the original BP decoding scheme), and has linear complexity. Extensive simulation demonstrates that it outperforms the original BP decoding scheme, especially for a small number of source packets. The enhanced form of the proposed algorithm combines the basic form of the algorithm and a guess-based algorithm to further improve the decoding performance. Simulation results demonstrate that it can provide better decoding performance than the guess-based algorithm with fewer guesses, and can achieve decoding performance close to that of the maximum likelihood decoder at a much lower decoding complexity. Last, we show that our nonbinary scheme has the potential to outperform the binary scheme when choosing suitable degree distributions, and furthermore it is insensitive to the size of the Galois field.

Iterative V-BLAST Decoding Algorithm in the AMC System with a STD Scheme

  • Lee, Keun-Hong;Ryoo, Sang-Jin;Kim, Seo-Gyun;Hwang, In-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • In this paper, we propose and analyze the AMC (Adaptive Modulation and Coding) system with efficient turbo coded V-BLAST (Vertical-Bell-lab Layered Space-Time) technique. The proposed algorithm adopts extrinsic information from a MAP (Maximum A Posteriori) decoder with iterative decoding as a priori probability in two decoding procedures of V-BLAST scheme; the ordering and the slicing. Also, we consider the AMC system using the conventional turbo coded V-BLAST technique that simply combines the V-BLAST scheme with the turbo coding scheme. And we compare the proposed decoding algorithm to a conventional V-BLAST decoding algorithm and a ML (Maximum Likelihood) decoding algorithm. In addition, we apply a STD (Selection Transmit Diversity) scheme to the systems for better performance improvement. Results indicate that the proposed systems achieve better throughput performance than the conventional systems over the entire SNR range. In terms of transmission rate performance, the suggested system is close in proximity to the conventional system using the ML decoding algorithm.

Serially Concatenated Multilevel Coded Modulation (직렬연접 다중레벨 부호변조)

  • Bae, Sang-Jae;Lee, Sang-Hoon;Joo Eon-Kyeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.11
    • /
    • pp.12-20
    • /
    • 2002
  • Serially concatenated multilevel coded modulation (SCMCM) is proposed in this paper. It is a combined scheme of the outer convolutional code and inner multilevel coded modulation (MCM) which is bandwidth-efficient coded modulation. And the performance of three schemes for decoding of the proposed SCMCM is compared and analyzed. As results of simulations, global iterative decoding with inner and outer code should be performed to improve the error performance as the number of iterations is increased. And the scheme which uses both local iterative multistage decoding in MCM and global iterative decoding with inner and outer code, called Scheme 3 in this paper, shows the best error performance among the three schemes considered in this paper. In addition, performance difference between this scheme and the others is increased as the signal to noise ratio (SNR) is increased. Therefore, Scheme 3 is considered to be the proper decoding scheme of SCMCM.

Serial Concatenation of Space-Time and Recursive Convolutional Codes

  • Ko, Young-Jo;Kim, Jung-Im
    • ETRI Journal
    • /
    • v.25 no.2
    • /
    • pp.144-147
    • /
    • 2003
  • We propose a new serial concatenation scheme for space-time and recursive convolutional codes, in which a space-time code is used as the outer code and a single recursive convolutional code as the inner code. We discuss previously proposed serial concatenation schemes employing multiple inner codes and compare them with the new one. The proposed method and the previous one with joint decoding, both performing a combined decoding of the simultaneous output signals from multiple antennas, give a large performance gain over the separate decoding method. In decoding complexity, the new concatenation scheme has a lower complexity compared with the multiple encoding/joint decoding scheme due to the use of the single inner code. Simulation results for a communication system with two transmit and one receive antennas in a quasi-static Rayleigh fading channel show that the proposed scheme outperforms the previous schemes.

  • PDF

An Improved Decoding Scheme of Hamming Codes using Soft Values (소프트 값을 이용한 해밍 부호의 개선된 복호 방식)

  • Cheong, Ho-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.37-42
    • /
    • 2019
  • In this paper, we propose a syndrome decoding scheme that can correct two errors for single error correcting Hamming codes within a code length. The decoding scheme proposed in this paper has the advantage of significantly improving the error rate performance compared to the decoder complexity by correcting multiple errors without substantially increasing the decoding complexity. It is suitable for applications in which the energy use of encoder/decoder is extremely limited and the low error rate performance is required, such as IoT communications and molecular communications. In order to verify the improvement of the error rate performance of the Hamming code with the proposed decoding scheme, we performed simulation on Hamming codes with short code length in the AWGN and BPSK modulation environments. As a result, compared with the conventional decoding method, the proposed decoding scheme showed performance improvement of about 1.1 ~ 1.2[dB] regardless of the code length of the Hamming code.