• 제목/요약/키워드: decode and forward

Search Result 193, Processing Time 0.017 seconds

Relay Selection Algorithm for Two-way Multiple Relay Channels (양방향 다중 중계기 채널에서의 중계기 선택 기법)

  • Kang, Yoo-Keun;Lee, Jae-Hong
    • Journal of Broadcast Engineering
    • /
    • v.14 no.2
    • /
    • pp.134-143
    • /
    • 2009
  • In this paper, we propose a new relay selection algorithm for a two-way multiple relay channel. In the two-way multiple relay channel, two users exchange information with each other via multiple relays. The relays use a decode-and-forward or amplify-and-forward protocol, and exploit the combining process of the received packets to reduce the required channel resources. In the multiple relay network, diversity gain is achieved as the number of relays increases, and various schemes are proposed. In this paper, we propose a single best relay selection scheme based on instantaneous channel conditions. First of all, relays obtain the instantaneous channel state information in the handshaking process, and a single best relay is selected in a distributed methods prior to data transmissions. The relay selection metric is proposed so that the end-to-end channel condition is evaluated based on the intantaneous channel state informations. Simulation results show that the proposed relay selection algorithm achieve the increased throughput and diversity order when the number of potential relays is increased.

A Versatile Reed-Solomon Decoder for Continuous Decoding of Variable Block-Length Codewords (가변 블록 길이 부호어의 연속 복호를 위한 가변형 Reed-Solomon 복호기)

  • 송문규;공민한
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.3
    • /
    • pp.187-187
    • /
    • 2004
  • In this paper, we present an efficient architecture of a versatile Reed-Solomon (RS) decoder which can be programmed to decode RS codes continuously with my message length k as well as any block length n. This unique feature eliminates the need of inserting zeros for decoding shortened RS codes. Also, the values of the parameters n and k, hence the error-correcting capability t can be altered at every codeword block. The decoder permits 3-step pipelined processing based on the modified Euclid's algorithm (MEA). Since each step can be driven by a separate clock, the decoder can operate just as 2-step pipeline processing by employing the faster clock in step 2 and/or step 3. Also, the decoder can be used even in the case that the input clock is different from the output clock. Each step is designed to have a structure suitable for decoding RS codes with varying block length. A new architecture for the MEA is designed for variable values of the t. The operating length of the shift registers in the MEA block is shortened by one, and it can be varied according to the different values of the t. To maintain the throughput rate with less circuitry, the MEA block uses both the recursive technique and the over-clocking technique. The decoder can decodes codeword received not only in a burst mode, but also in a continuous mode. It can be used in a wide range of applications because of its versatility. The adaptive RS decoder over GF($2^8$) having the error-correcting capability of upto 10 has been designed in VHDL, and successfully synthesized in an FPGA chip.

A Versatile Reed-Solomon Decoder for Continuous Decoding of Variable Block-Length Codewords (가변 블록 길이 부호어의 연속 복호를 위한 가변형 Reed-Solomon 복호기)

  • 송문규;공민한
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.3
    • /
    • pp.29-38
    • /
    • 2004
  • In this paper, we present an efficient architecture of a versatile Reed-Solomon (RS) decoder which can be programmed to decode RS codes continuously with my message length k as well as any block length n. This unique feature eliminates the need of inserting zeros for decoding shortened RS codes. Also, the values of the parameters n and k, hence the error-correcting capability t can be altered at every codeword block. The decoder permits 3-step pipelined processing based on the modified Euclid's algorithm (MEA). Since each step can be driven by a separate clock, the decoder can operate just as 2-step pipeline processing by employing the faster clock in step 2 and/or step 3. Also, the decoder can be used even in the case that the input clock is different from the output clock. Each step is designed to have a structure suitable for decoding RS codes with varying block length. A new architecture for the MEA is designed for variable values of the t. The operating length of the shift registers in the MEA block is shortened by one, and it can be varied according to the different values of the t. To maintain the throughput rate with less circuitry, the MEA block uses both the recursive technique and the over-clocking technique. The decoder can decodes codeword received not only in a burst mode, but also in a continuous mode. It can be used in a wide range of applications because of its versatility. The adaptive RS decoder over GF(2$^{8}$ ) having the error-correcting capability of upto 10 has been designed in VHDL, and successfully synthesized in an FPGA chip.