• Title/Summary/Keyword: decision-tree model

Search Result 728, Processing Time 0.027 seconds

Forecasting Sow's Productivity using the Machine Learning Models (머신러닝을 활용한 모돈의 생산성 예측모델)

  • Lee, Min-Soo;Choe, Young-Chan
    • Journal of Agricultural Extension & Community Development
    • /
    • v.16 no.4
    • /
    • pp.939-965
    • /
    • 2009
  • The Machine Learning has been identified as a promising approach to knowledge-based system development. This study aims to examine the ability of machine learning techniques for farmer's decision making and to develop the reference model for using pig farm data. We compared five machine learning techniques: logistic regression, decision tree, artificial neural network, k-nearest neighbor, and ensemble. All models are well performed to predict the sow's productivity in all parity, showing over 87.6% predictability. The model predictability of total litter size are highest at 91.3% in third parity and decreasing as parity increases. The ensemble is well performed to predict the sow's productivity. The neural network and logistic regression is excellent classifier for all parity. The decision tree and the k-nearest neighbor was not good classifier for all parity. Performance of models varies over models used, showing up to 104% difference in lift values. Artificial Neural network and ensemble models have resulted in highest lift values implying best performance among models.

  • PDF

Comparison of the Prediction Model of Adolescents' Suicide Attempt Using Logistic Regression and Decision Tree: Secondary Data Analysis of the 2019 Youth Health Risk Behavior Web-Based Survey (로지스틱 회귀모형과 의사결정 나무모형을 활용한 청소년 자살 시도 예측모형 비교: 2019 청소년 건강행태 온라인조사를 이용한 2차 자료분석)

  • Lee, Yoonju;Kim, Heejin;Lee, Yesul;Jeong, Hyesun
    • Journal of Korean Academy of Nursing
    • /
    • v.51 no.1
    • /
    • pp.40-53
    • /
    • 2021
  • Purpose: The purpose of this study was to develop and compare the prediction model for suicide attempts by Korean adolescents using logistic regression and decision tree analysis. Methods: This study utilized secondary data drawn from the 2019 Youth Health Risk Behavior web-based survey. A total of 20 items were selected as the explanatory variables (5 of sociodemographic characteristics, 10 of health-related behaviors, and 5 of psychosocial characteristics). For data analysis, descriptive statistics and logistic regression with complex samples and decision tree analysis were performed using IBM SPSS ver. 25.0 and Stata ver. 16.0. Results: A total of 1,731 participants (3.0%) out of 57,303 responded that they had attempted suicide. The most significant predictors of suicide attempts as determined using the logistic regression model were experience of sadness and hopelessness, substance abuse, and violent victimization. Girls who have experience of sadness and hopelessness, and experience of substance abuse have been identified as the most vulnerable group in suicide attempts in the decision tree model. Conclusion: Experiences of sadness and hopelessness, experiences of substance abuse, and experiences of violent victimization are the common major predictors of suicide attempts in both logistic regression and decision tree models, and the predict rates of both models were similar. We suggest to provide programs considering combination of high-risk predictors for adolescents to prevent suicide attempt.

The Prediction Model for Self-Reported Voice Problem Using a Decision Tree Model (의사결정나무 모형을 이용한 주관적 음성장애 예측모형)

  • Byeon, Haewon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3368-3373
    • /
    • 2013
  • The purpose of this study was to analyze the risk factors of self-reported voice problem. Data were from the Korea National Health and Nutritional Examination Survey 2008. Subjects were 3,600 persons (1,501 men, 2,099 women) aged 19 years and older. A prediction model was developed by the use of a exhaustive CHAID (Chi Squared Automatic Interaction Detection) algorism of decision tree model. In the decision tree analysis, pain and discomfort during the last 2 weeks, age, the longest occupation and thyroid disorders was significantly associated with self-reported voice problem. The findings of associated factors suggest potential ways of targeting counseling and prevention efforts to control self-reported voice problem.

Prediction of Landslide Probability around Railway using Decision Tree Model (Decision Tree model을 이용한 철도 주변 산사태 발생가능성 예측)

  • Yun, Jung-Mann;Song, Young-Suk;Bak, Gueon Jun;You, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.129-137
    • /
    • 2017
  • In this study, the prediction of landslide probability was performed to the study area located in ${\bigcirc}{\bigcirc}$ area of Muan-gun, Jeonnam Province around Honam railway using the computer program SHAPP ver 1.0 developed by a decision tree model. The soil samples were collected at total 8 points, and soil tests were performed to measure soil properties. The thematic maps of soil properties such as coefficient of permeability and void ratio were made on the basis of soil test results. The slope angle analysis of topography was performed using a digital map. As the prediction result of landslide probability, 435 cells among total 15,552 cells were predicted to be in the event of landslides. Therefore, the predicted area of occurring landslides may be $43,500m^2$ because the analyzed cell size was $10m{\times}10m$.

Tree-based Approach to Predict Hospital Acquired Pressure Injury

  • Hyun, Sookyung;Moffatt-Bruce, Susan;Newton, Cheryl;Hixon, Brenda;Kaewprag, Pacharmon
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.8-13
    • /
    • 2019
  • Despite technical advances in healthcare, the rates of hospital-acquired pressure injury (HAPI) are still high although many are potentially preventable. The purpose of this study was to determine whether tree-based prediction modeling is suitable for assessing the risk of HAPI in ICU patients. Retrospective cohort study has been carried out. A decision tree model was constructed with Age, Weight, eTube, diabetes, Braden score, Isolation, and Number of comorbid conditions as decision nodes. We used RStudio for model training and testing. Correct prediction rate of the final prediction model was 92.4 and the Area Under the ROC curve (AUC) was 0.699, which means there is about 70% chance that the model is able to distinguish between HAPI and non-HAPI. The results of this study has limited generalizability as the data were from a single academic institution. Our research finding shows that the data-driven tree-based prediction modeling may potentially support ICU sensitive risk assessment for HAPI prevention.

Feature Based Decision Tree Model for Fault Detection and Classification of Semiconductor Process (반도체 공정의 이상 탐지와 분류를 위한 특징 기반 의사결정 트리)

  • Son, Ji-Hun;Ko, Jong-Myoung;Kim, Chang-Ouk
    • IE interfaces
    • /
    • v.22 no.2
    • /
    • pp.126-134
    • /
    • 2009
  • As product quality and yield are essential factors in semiconductor manufacturing, monitoring the main manufacturing steps is a critical task. For the purpose, FDC(Fault detection and classification) is used for diagnosing fault states in the processes by monitoring data stream collected by equipment sensors. This paper proposes an FDC model based on decision tree which provides if-then classification rules for causal analysis of the processing results. Unlike previous decision tree approaches, we reflect the structural aspect of the data stream to FDC. For this, we segment the data stream into multiple subregions, define structural features for each subregion, and select the features which have high relevance to results of the process and low redundancy to other features. As the result, we can construct simple, but highly accurate FDC model. Experiments using the data stream collected from etching process show that the proposed method is able to classify normal/abnormal states with high accuracy.

Prediction of karst sinkhole collapse using a decision-tree (DT) classifier

  • Boo Hyun Nam;Kyungwon Park;Yong Je Kim
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.441-453
    • /
    • 2024
  • Sinkhole subsidence and collapse is a common geohazard often formed in karst areas such as the state of Florida, United States of America. To predict the sinkhole occurrence, we need to understand the formation mechanism of sinkhole and its karst hydrogeology. For this purpose, investigating the factors affecting sinkholes is an essential and important step. The main objectives of the presenting study are (1) the development of a machine learning (ML)-based model, namely C5.0 decision tree (C5.0 DT), for the prediction of sinkhole susceptibility, which accounts for sinkhole/subsidence inventory and sinkhole contributing factors (e.g., geological/hydrogeological) and (2) the construction of a regional-scale sinkhole susceptibility map. The study area is east central Florida (ECF) where a cover-collapse type is commonly reported. The C5.0 DT algorithm was used to account for twelve (12) identified hydrogeological factors. In this study, a total of 1,113 sinkholes in ECF were identified and the dataset was then randomly divided into 70% and 30% subsets for training and testing, respectively. The performance of the sinkhole susceptibility model was evaluated using a receiver operating characteristic (ROC) curve, particularly the area under the curve (AUC). The C5.0 model showed a high prediction accuracy of 83.52%. It is concluded that a decision tree is a promising tool and classifier for spatial prediction of karst sinkholes and subsidence in the ECF area.

Axial load prediction in double-skinned profiled steel composite walls using machine learning

  • G., Muthumari G;P. Vincent
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.739-754
    • /
    • 2024
  • This study presents an innovative AI-driven approach to assess the ultimate axial load in Double-Skinned Profiled Steel sheet Composite Walls (DPSCWs). Utilizing a dataset of 80 entries, seven input parameters were employed, and various AI techniques, including Linear Regression, Polynomial Regression, Support Vector Regression, Decision Tree Regression, Decision Tree with AdaBoost Regression, Random Forest Regression, Gradient Boost Regression Tree, Elastic Net Regression, Ridge Regression, and LASSO Regression, were evaluated. Decision Tree Regression and Random Forest Regression emerged as the most accurate models. The top three performing models were integrated into a hybrid approach, excelling in accurately estimating DPSCWs' ultimate axial load. This adaptable hybrid model outperforms traditional methods, reducing errors in complex scenarios. The validated Artificial Neural Network (ANN) model showcases less than 1% error, enhancing reliability. Correlation analysis highlights robust predictions, emphasizing the importance of steel sheet thickness. The study contributes insights for predicting DPSCW strength in civil engineering, suggesting optimization and database expansion. The research advances precise load capacity estimation, empowering engineers to enhance construction safety and explore further machine learning applications in structural engineering.

An Analysis of Choice Behavior for Tour Type of Commercial Vehicle using Decision Tree (의사결정나무를 이용한 화물자동차 투어유형 선택행태 분석)

  • Kim, Han-Su;Park, Dong-Ju;Kim, Chan-Seong;Choe, Chang-Ho;Kim, Gyeong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.6
    • /
    • pp.43-54
    • /
    • 2010
  • In recent years there have been studies on tour based approaches for freight travel demand modelling. The purpose of this paper is to analyze tour type choice behavior of commercial vehicles which are divided into round trips and chained tours. The methods of the study are based on the decision tree and the logit model. The results indicates that the explanation variables for classifying tour types of commercial vehicles are loading factor, average goods quantity, and total goods quantity. The results of the decision tree method are similar to those of logit model. In addition, the explanation variables for tour type classification of small trucks are not different from those for medium trucks', implying that the most important factor on the vehicle tour planning is how to load goods such as shipment size and total quantity.

Customer Segmentation of a Home Study Company using a Hybrid Decision Tree and Artificial Neural Network Model (하이브리드 의사결정나무와 인공신경망 모델을 이용한 방문학습지사의 고객세분화)

  • Seo Kwang-Kyu;Ahn Beum-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.518-523
    • /
    • 2006
  • Due to keen competition among companies, they have segmented customers and they are trying to offer specially targeted customer by means of the distinguished method. In accordance, data mining techniques are noted as the effective method that extracts useful information. This paper explores customer segmentation of the home study company using a hybrid decision tree and artificial neural network model. With the application of variance selection process from decision tree, the systemic process of defining input vector's value and the rule generation were developed. In point of customer management, this research analyzes current customers and produces the patterns of them so that the company can maintain good customer relationship. The case study shows that the predicted accuracy of the proposed model is higher than those of regression, decision tree (CART), artificial neural networks.

  • PDF