• 제목/요약/키워드: decision tree

검색결과 1,678건 처리시간 0.027초

Ensemble of Fuzzy Decision Tree for Efficient Indoor Space Recognition

  • Kim, Kisang;Choi, Hyung-Il
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권4호
    • /
    • pp.33-39
    • /
    • 2017
  • In this paper, we expand the process of classification to an ensemble of fuzzy decision tree. For indoor space recognition, many research use Boosted Tree, consists of Adaboost and decision tree. The Boosted Tree extracts an optimal decision tree in stages. On each stage, Boosted Tree extracts the good decision tree by minimizing the weighted error of classification. This decision tree performs a hard decision. In most case, hard decision offer some error when they classify nearby a dividing point. Therefore, We suggest an ensemble of fuzzy decision tree, which offer some flexibility to the Boosted Tree algorithm as well as a high performance. In experimental results, we evaluate that the accuracy of suggested methods improved about 13% than the traditional one.

Optimal Decision Tree를 이용한 Unseen Model 추정방법 (Unseen Model Prediction using an Optimal Decision Tree)

  • 김성탁;김회린
    • 대한음성학회지:말소리
    • /
    • 제45호
    • /
    • pp.117-126
    • /
    • 2003
  • Decision tree-based state tying has been proposed in recent years as the most popular approach for clustering the states of context-dependent hidden Markov model-based speech recognition. The aims of state tying is to reduce the number of free parameters and predict state probability distributions of unseen models. But, when doing state tying, the size of a decision tree is very important for word independent recognition. In this paper, we try to construct optimized decision tree based on the average of feature vectors in state pool and the number of seen modes. We observed that the proposed optimal decision tree is effective in predicting the state probability distribution of unseen models.

  • PDF

Hybridized Decision Tree methods for Detecting Generic Attack on Ciphertext

  • Alsariera, Yazan Ahmad
    • International Journal of Computer Science & Network Security
    • /
    • 제21권7호
    • /
    • pp.56-62
    • /
    • 2021
  • The surge in generic attacks execution against cipher text on the computer network has led to the continuous advancement of the mechanisms to protect information integrity and confidentiality. The implementation of explicit decision tree machine learning algorithm is reported to accurately classifier generic attacks better than some multi-classification algorithms as the multi-classification method suffers from detection oversight. However, there is a need to improve the accuracy and reduce the false alarm rate. Therefore, this study aims to improve generic attack classification by implementing two hybridized decision tree algorithms namely Naïve Bayes Decision tree (NBTree) and Logistic Model tree (LMT). The proposed hybridized methods were developed using the 10-fold cross-validation technique to avoid overfitting. The generic attack detector produced a 99.8% accuracy, an FPR score of 0.002 and an MCC score of 0.995. The performances of the proposed methods were better than the existing decision tree method. Similarly, the proposed method outperformed multi-classification methods for detecting generic attacks. Hence, it is recommended to implement hybridized decision tree method for detecting generic attacks on a computer network.

A Comparative Study of Medical Data Classification Methods Based on Decision Tree and System Reconstruction Analysis

  • Tang, Tzung-I;Zheng, Gang;Huang, Yalou;Shu, Guangfu;Wang, Pengtao
    • Industrial Engineering and Management Systems
    • /
    • 제4권1호
    • /
    • pp.102-108
    • /
    • 2005
  • This paper studies medical data classification methods, comparing decision tree and system reconstruction analysis as applied to heart disease medical data mining. The data we study is collected from patients with coronary heart disease. It has 1,723 records of 71 attributes each. We use the system-reconstruction method to weight it. We use decision tree algorithms, such as induction of decision trees (ID3), classification and regression tree (C4.5), classification and regression tree (CART), Chi-square automatic interaction detector (CHAID), and exhausted CHAID. We use the results to compare the correction rate, leaf number, and tree depth of different decision-tree algorithms. According to the experiments, we know that weighted data can improve the correction rate of coronary heart disease data but has little effect on the tree depth and leaf number.

Heart Disease Prediction Using Decision Tree With Kaggle Dataset

  • Noh, Young-Dan;Cho, Kyu-Cheol
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.21-28
    • /
    • 2022
  • 심혈관질환은 심장질환과 혈관질환 등 순환기계통에 생기는 모든 질병을 통칭한다. 심혈관질환은 2019년 사망의 1/3을 차지하는 전 세계 사망의 주요 원인이며, 사망자는 계속 증가하고 있다. 이와 같은 질병을 인공지능을 활용해 환자의 데이터로 미리 예측이 가능하다면 질병을 조기에 발견해 치료할 수 있을 것이다. 본 연구에서는 심혈관질환 중 하나인 심장질환을 예측하는 모델들을 생성하였으며 Accuracy, Precision, Recall의 측정값을 지표로 하여 모델들의 성능을 비교한다. 또한 Decision Tree의 성능을 향상시키는 방법에 대해 기술한다. 본 연구에서는 macOS Big Sur환경에서 Jupyter Notebook으로 Python을 사용해 scikit-learn, Keras, TensorFlow 라이브러리를 이용하여 실험을 진행하였다. 연구에 사용된 모델은 Decision Tree, KNN(K-Nearest Neighbor), SVM(Support Vector Machine), DNN(Deep Neural Network)으로 총 4가지 모델을 생성하였다. 모델들의 성능 비교 결과 Decision Tree 성능이 가장 높은 것으로 나타났다. 본 연구에서는 노드의 특성배치를 변경하고 트리의 최대 깊이를 3으로 지정한 Decision Tree를 사용하였을 때 가장 성능이 높은 것으로 나타났으므로 노드의 특성 배치 변경과 트리의 최대 깊이를 설정한 Decision Tree를 사용하는 것을 권장한다.

도심지 아스팔트 포장의 유지보수공법 의사결정 절차 개선 (Improvement of a Decision Tree for The Rehabilitation of Asphalt Pavement in City Road)

  • 박창규;김원재;김태우;이진욱;백종은;이현종
    • 한국도로학회논문집
    • /
    • 제20권3호
    • /
    • pp.27-37
    • /
    • 2018
  • PURPOSES : The objective of this study is to develop a pavement rehabilitation decision tree considering current pavement condition by evaluating severity and distress types such as roughness, cracking and rutting. METHODS : To improve the proposed overall rehabilitation decision tree, current decision tree from Korea and decision trees from other countries were summarized and investigated. The problem when applying the current rehabilitation method obtained from the decision tree applied in Seoul was further analyzed. It was found that the current decision trees do not consider different distress characteristics such as crack type, road types and functions. Because of this, different distress values for IRI, crack rate and plastic deformation was added to the proposed decision tree to properly recommend appropriate pavement rehabilitation. Utilizing the 2017 Seoul pavement management system data and considering all factors as discussed, the proposed overall decision tree was revised and improved. RESULTS :In this study, the type of crack was included to the decision tree. Meanwhile current design thickness and special asphalt mixture were studied and improved to be applied on different pavement condition. In addition, the improved decision tree was incorporated with the Seoul asphalt overlay design program. In the case of Seoul's rehabilitation budget, rehabilitation budget can be optimized if a 25mm milling and overlay thickness is used. CONCLUSIONS:A practical and theoretical evaluation tool in pavement rehabilitation design was presented and proposed for Seoul City.

사상체질 판별을 위한 2단계 의사결정 나무 분석 (Two-Stage Decision Tree Analysis for Diagnosis of Personal Sasang Constitution Medicine Type)

  • 진희정;이혜정;김명건;김홍기;김종열
    • 사상체질의학회지
    • /
    • 제22권3호
    • /
    • pp.87-97
    • /
    • 2010
  • 1. Objectives: In SCM, a personal Sasang constitution must be determined accurately before any Sasang treatment. The purpose of this study is to develop an objective method for classification of Sasang constitution. 2. Methods: We collected samples from 5 centers where SCM is practiced, and applied two-stage decision tree analysis on these samples. We recruited samples from 5 centers. The collected data were from subjects whose response to herbal medicine was confirmed according to Sasang constitution. 3. Results: The two-stage decision tree model shows higher classification power than a simple decision tree model. This study also suggests that gender must be considered in the first stage to improve the accuracy of classification. 4. Conclusions: We identified important factors for classifying Sasang constitutions through two-stage decision tree analysis. The two-stage decision tree model shows higher classification power than a simple decision tree model.

다중 분포 학습 모델을 위한 Haar-like Feature와 Decision Tree를 이용한 학습 알고리즘 (Learning Algorithm for Multiple Distribution Data using Haar-like Feature and Decision Tree)

  • 곽주현;원일용;이창훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권1호
    • /
    • pp.43-48
    • /
    • 2013
  • Adaboost 알고리즘은 얼굴인식을 위한 Haar-like feature들을 이용하기 위해 가장 널리 쓰이고 있는 알고리즘이다. 매우 빠르며 효율적인 성능을 보이고 있으며 하나의 모델이미지가 존재하는 단일분포 데이터에 대해 매우 효율적이다. 그러나 정면 얼굴과 측면 얼굴을 혼합한 인식 등 둘 이상의 모델이미지를 가진 다중 분포모델에 대해서는 그 성능이 저하된다. 이는 단일 학습 알고리즘의 선형결합에 의존하기 때문에 생기는 현상이며 그 응용범위의 한계를 지니게 된다. 본 연구에서는 이를 해결하기 위한 제안으로서 Decision Tree를 Harr-like Feature와 결합하는 기법을 제안한다. Decision Tree를 사용 함으로서 보다 넓은 분야의 문제를 해결하기 위해 기존의 Decision Tree를 Harr-like Feature에 적합하도록 개선한 HDCT라고 하는 Harr-like Feature를 활용한 Decision Tree를 제안하였으며 이것의 성능을 Adaboost와 비교 평가하였다.

Modeling of Environmental Survey by Decision Trees

  • 박희창;조광현
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2004년도 추계학술대회
    • /
    • pp.63-75
    • /
    • 2004
  • The decision tree approach is most useful in classification problems and to divide the search space into rectangular regions. Decision tree algorithms are used extensively for data mining in many domains such as retail target marketing, fraud dection, data reduction and variable screening, category merging, etc. We analyze Gyeongnam social indicator survey data using decision tree techniques for environmental information. We can use these decision tree outputs for environmental preservation and improvement.

  • PDF

Modeling of Environmental Survey by Decision Trees

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권4호
    • /
    • pp.759-771
    • /
    • 2004
  • The decision tree approach is most useful in classification problems and to divide the search space into rectangular regions. Decision tree algorithms are used extensively for data mining in many domains such as retail target marketing, fraud dection, data reduction and variable screening, category merging, etc. We analyze Gyeongnam social indicator survey data using decision tree techniques for environmental information. We can use these decision tree outputs for environmental preservation and improvement.

  • PDF