• Title/Summary/Keyword: decision support systems

Search Result 895, Processing Time 0.029 seconds

A Study on the Fraud Detection for Electronic Prepayment using Machine Learning (머신러닝을 이용한 선불전자지급수단의 이상금융거래 탐지 연구)

  • Choi, Byung-Ho;Cho, Nam-Wook
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.65-77
    • /
    • 2022
  • Due to the recent development in electronic financial services, transactions of electronic prepayment are rapidly growing, leading to growing fraud attempts. This paper proposes a methodology that can effectively detect fraud transactions in electronic prepayment by machine learning algorithms, including support vector machines, decision trees, and artificial neural networks. Actual transaction data of electronic prepayment services were collected and preprocessed to extract the most relevant variables from raw data. Two different approaches were explored in the paper. One is a transaction-based approach, and the other is a user ID-based approach. For the transaction-based approach, the first model is primarily based on raw data features, while the second model uses extra features in addition to the first model. The user ID-based approach also used feature engineering to extract and transform the most relevant features. Overall, the user ID-based approach showed a better performance than the transaction-based approach, where the artificial neural networks showed the best performance. The proposed method could be used to reduce the damage caused by financial accidents by detecting and blocking fraud attempts.

Research Framework for International Franchising (국제프랜차이징 연구요소 및 연구방향)

  • Kim, Ju-Young;Lim, Young-Kyun;Shim, Jae-Duck
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.4
    • /
    • pp.61-118
    • /
    • 2008
  • The purpose of this research is to construct research framework for international franchising based on existing literature and to identify research components in the framework. Franchise can be defined as management styles that allow franchisee use various management assets of franchisor in order to make or sell product or service. It can be divided into product distribution franchise that is designed to sell products and business format franchise that is designed for running it as business whatever its form is. International franchising can be defined as a way of internationalization of franchisor to foreign country by providing its business format or package to franchisee of host country. International franchising is growing fast for last four decades but academic research on this is quite limited. Especially in Korea, research about international franchising is carried out on by case study format with single case or empirical study format with survey based on domestic franchise theory. Therefore, this paper tries to review existing literature on international franchising research, providing research framework, and then stimulating new research on this field. International franchising research components include motives and environmental factors for decision of expanding to international franchising, entrance modes and development plan for international franchising, contracts and management strategy of international franchising, and various performance measures from different perspectives. First, motives of international franchising are fee collection from franchisee. Also it provides easier way to expanding to foreign country. The other motives including increase total sales volume, occupying better strategic position, getting quality resources, and improving efficiency. Environmental factors that facilitating international franchising encompasses economic condition, trend, and legal or political factors in host and/or home countries. In addition, control power and risk management capability of franchisor plays critical role in successful franchising contract. Final decision to enter foreign country via franchising is determined by numerous factors like history, size, growth, competitiveness, management system, bonding capability, industry characteristics of franchisor. After deciding to enter into foreign country, franchisor needs to set entrance modes of international franchising. Within contractual mode, there are master franchising and area developing franchising, licensing, direct franchising, and joint venture. Theories about entrance mode selection contain concepts of efficiency, knowledge-based approach, competence-based approach, agent theory, and governance cost. The next step after entrance decision is operation strategy. Operation strategy starts with selecting a target city and a target country for franchising. In order to finding, screening targets, franchisor needs to collect information about candidates. Critical information includes brand patent, commercial laws, regulations, market conditions, country risk, and industry analysis. After selecting a target city in target country, franchisor needs to select franchisee, in other word, partner. The first important criteria for selecting partners are financial credibility and capability, possession of real estate. And cultural similarity and knowledge about franchisor and/or home country are also recognized as critical criteria. The most important element in operating strategy is legal document between franchisor and franchisee with home and host countries. Terms and conditions in legal documents give objective information about characteristics of franchising agreement for academic research. Legal documents have definitions of terminology, territory and exclusivity, agreement of term, initial fee, continuing fees, clearing currency, and rights about sub-franchising. Also, legal documents could have terms about softer elements like training program and operation manual. And harder elements like law competent court and terms of expiration. Next element in operating strategy is about product and service. Especially for business format franchising, product/service deliverable, benefit communicators, system identifiers (architectural features), and format facilitators are listed for product/service strategic elements. Another important decision on product/service is standardization vs. customization. The rationale behind standardization is cost reduction, efficiency, consistency, image congruence, brand awareness, and competitiveness on price. Also standardization enables large scale R&D and innovative change in management style. Another element in operating strategy is control management. The simple way to control franchise contract is relying on legal terms, contractual control system. There are other control systems, administrative control system and ethical control system. Contractual control system is a coercive source of power, but franchisor usually doesn't want to use legal power since it doesn't help to build up positive relationship. Instead, self-regulation is widely used. Administrative control system uses control mechanism from ordinary work relationship. Its main component is supporting activities to franchisee and communication method. For example, franchisor provides advertising, training, manual, and delivery, then franchisee follows franchisor's direction. Another component is building franchisor's brand power. The last research element is performance factor of international franchising. Performance elements can be divided into franchisor's performance and franchisee's performance. The conceptual performance measures of franchisor are simple but not easy to obtain objectively. They are profit, sale, cost, experience, and brand power. The performance measures of franchisee are mostly about benefits of host country. They contain small business development, promotion of employment, introduction of new business model, and level up technology status. There are indirect benefits, like increase of tax, refinement of corporate citizenship, regional economic clustering, and improvement of international balance. In addition to those, host country gets socio-cultural change other than economic effects. It includes demographic change, social trend, customer value change, social communication, and social globalization. Sometimes it is called as westernization or McDonaldization of society. In addition, the paper reviews on theories that have been frequently applied to international franchising research, such as agent theory, resource-based view, transaction cost theory, organizational learning theory, and international expansion theories. Resource based theory is used in strategic decision based on resources, like decision about entrance and cooperation depending on resources of franchisee and franchisor. Transaction cost theory can be applied in determination of mutual trust or satisfaction of franchising players. Agent theory tries to explain strategic decision for reducing problem caused by utilizing agent, for example research on control system in franchising agreements. Organizational Learning theory is relatively new in franchising research. It assumes organization tries to maximize performance and learning of organization. In addition, Internalization theory advocates strategic decision of direct investment for removing inefficiency of market transaction and is applied in research on terms of contract. And oligopolistic competition theory is used to explain various entry modes for international expansion. Competency theory support strategic decision of utilizing key competitive advantage. Furthermore, research methodologies including qualitative and quantitative methodologies are suggested for more rigorous international franchising research. Quantitative research needs more real data other than survey data which is usually respondent's judgment. In order to verify theory more rigorously, research based on real data is essential. However, real quantitative data is quite hard to get. The qualitative research other than single case study is also highly recommended. Since international franchising has limited number of applications, scientific research based on grounded theory and ethnography study can be used. Scientific case study is differentiated with single case study on its data collection method and analysis method. The key concept is triangulation in measurement, logical coding and comparison. Finally, it provides overall research direction for international franchising after summarizing research trend in Korea. International franchising research in Korea has two different types, one is for studying Korean franchisor going overseas and the other is for Korean franchisee of foreign franchisor. Among research on Korean franchisor, two common patterns are observed. First of all, they usually deal with success story of one franchisor. The other common pattern is that they focus on same industry and country. Therefore, international franchise research needs to extend their focus to broader subjects with scientific research methodology as well as development of new theory.

  • PDF

A Study on the Effect of the Document Summarization Technique on the Fake News Detection Model (문서 요약 기법이 가짜 뉴스 탐지 모형에 미치는 영향에 관한 연구)

  • Shim, Jae-Seung;Won, Ha-Ram;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.201-220
    • /
    • 2019
  • Fake news has emerged as a significant issue over the last few years, igniting discussions and research on how to solve this problem. In particular, studies on automated fact-checking and fake news detection using artificial intelligence and text analysis techniques have drawn attention. Fake news detection research entails a form of document classification; thus, document classification techniques have been widely used in this type of research. However, document summarization techniques have been inconspicuous in this field. At the same time, automatic news summarization services have become popular, and a recent study found that the use of news summarized through abstractive summarization has strengthened the predictive performance of fake news detection models. Therefore, the need to study the integration of document summarization technology in the domestic news data environment has become evident. In order to examine the effect of extractive summarization on the fake news detection model, we first summarized news articles through extractive summarization. Second, we created a summarized news-based detection model. Finally, we compared our model with the full-text-based detection model. The study found that BPN(Back Propagation Neural Network) and SVM(Support Vector Machine) did not exhibit a large difference in performance; however, for DT(Decision Tree), the full-text-based model demonstrated a somewhat better performance. In the case of LR(Logistic Regression), our model exhibited the superior performance. Nonetheless, the results did not show a statistically significant difference between our model and the full-text-based model. Therefore, when the summary is applied, at least the core information of the fake news is preserved, and the LR-based model can confirm the possibility of performance improvement. This study features an experimental application of extractive summarization in fake news detection research by employing various machine-learning algorithms. The study's limitations are, essentially, the relatively small amount of data and the lack of comparison between various summarization technologies. Therefore, an in-depth analysis that applies various analytical techniques to a larger data volume would be helpful in the future.

A Recidivism Prediction Model Based on XGBoost Considering Asymmetric Error Costs (비대칭 오류 비용을 고려한 XGBoost 기반 재범 예측 모델)

  • Won, Ha-Ram;Shim, Jae-Seung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.127-137
    • /
    • 2019
  • Recidivism prediction has been a subject of constant research by experts since the early 1970s. But it has become more important as committed crimes by recidivist steadily increase. Especially, in the 1990s, after the US and Canada adopted the 'Recidivism Risk Assessment Report' as a decisive criterion during trial and parole screening, research on recidivism prediction became more active. And in the same period, empirical studies on 'Recidivism Factors' were started even at Korea. Even though most recidivism prediction studies have so far focused on factors of recidivism or the accuracy of recidivism prediction, it is important to minimize the prediction misclassification cost, because recidivism prediction has an asymmetric error cost structure. In general, the cost of misrecognizing people who do not cause recidivism to cause recidivism is lower than the cost of incorrectly classifying people who would cause recidivism. Because the former increases only the additional monitoring costs, while the latter increases the amount of social, and economic costs. Therefore, in this paper, we propose an XGBoost(eXtream Gradient Boosting; XGB) based recidivism prediction model considering asymmetric error cost. In the first step of the model, XGB, being recognized as high performance ensemble method in the field of data mining, was applied. And the results of XGB were compared with various prediction models such as LOGIT(logistic regression analysis), DT(decision trees), ANN(artificial neural networks), and SVM(support vector machines). In the next step, the threshold is optimized to minimize the total misclassification cost, which is the weighted average of FNE(False Negative Error) and FPE(False Positive Error). To verify the usefulness of the model, the model was applied to a real recidivism prediction dataset. As a result, it was confirmed that the XGB model not only showed better prediction accuracy than other prediction models but also reduced the cost of misclassification most effectively.

A Study on the Correspondence and the Autonomy between the Act on the Guarantee of Rights of and Support for Persons with Developmental Disabilities and the Similar Ordinances of the Local Governments (발달장애인 권리보장 및 지원에 관한 법률과 지방자치단체 유사조례 간의 연계성과 자치성에 관한 연구)

  • Jeon, Jihye;Lee, Sehee
    • 한국사회정책
    • /
    • v.25 no.2
    • /
    • pp.367-402
    • /
    • 2018
  • This study analyzed the relationship between the act on the guarantee of rights of and support for persons with developmental disabilities(Act for PWDD) and the similar ordinance of the local governments based on this law and focused on the correspondence(the rate of reflection) and the autonomy(differentiation). As of October 2017, 63 local government regulations and Act for PWDD were analyzed in this study. The results of the analysis are as follows: First, the rate of reflection in the ordinance of Act for PWDD was different according to the clause. In the aspect of emphasizing welfare support, the agreement between local ordinance and rate was high. While the Act for PWDD emphasized the rights of persons with developmental disabilities, there was little information about their right in the ordinance of local governments. This is evidence that current ordinance is based on the protective point of view for people with developmental disabilities. In the future, policy measures will be needed to ensure that respect for decision-making by persons with developmental disabilities and rights guarantees are included in the bylaws. Second, there is a provision that the rate of ordinance reflection is 0%, which may be guaranteed by other laws in the area, so it does not mean the absence of related system in the region, but there is possibility of institutional blind spot. In the future, consideration should be given to the complementarity of other legal systems in the area with developmental disabilities, so that persons with developmental disabilities should not be placed in institutional blind spots. Third, the autonomy(differentiation) of local ordinance was examined from the contents aspect and the administrative aspect to help practical implementation. The differentiation between the ordinances vary. Emphasizing the responsibilities of the head of the organization, emphasizing the fact-finding survey, setting up the welfare committee, or adding local needs were included to the ordinance. Local governments considering the enactment of ordinances in the future should refer to these cases and establish enactable local ordinances that take advantage of the characteristics of local autonomy.

The prediction of the stock price movement after IPO using machine learning and text analysis based on TF-IDF (증권신고서의 TF-IDF 텍스트 분석과 기계학습을 이용한 공모주의 상장 이후 주가 등락 예측)

  • Yang, Suyeon;Lee, Chaerok;Won, Jonggwan;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.237-262
    • /
    • 2022
  • There has been a growing interest in IPOs (Initial Public Offerings) due to the profitable returns that IPO stocks can offer to investors. However, IPOs can be speculative investments that may involve substantial risk as well because shares tend to be volatile, and the supply of IPO shares is often highly limited. Therefore, it is crucially important that IPO investors are well informed of the issuing firms and the market before deciding whether to invest or not. Unlike institutional investors, individual investors are at a disadvantage since there are few opportunities for individuals to obtain information on the IPOs. In this regard, the purpose of this study is to provide individual investors with the information they may consider when making an IPO investment decision. This study presents a model that uses machine learning and text analysis to predict whether an IPO stock price would move up or down after the first 5 trading days. Our sample includes 691 Korean IPOs from June 2009 to December 2020. The input variables for the prediction are three tone variables created from IPO prospectuses and quantitative variables that are either firm-specific, issue-specific, or market-specific. The three prospectus tone variables indicate the percentage of positive, neutral, and negative sentences in a prospectus, respectively. We considered only the sentences in the Risk Factors section of a prospectus for the tone analysis in this study. All sentences were classified into 'positive', 'neutral', and 'negative' via text analysis using TF-IDF (Term Frequency - Inverse Document Frequency). Measuring the tone of each sentence was conducted by machine learning instead of a lexicon-based approach due to the lack of sentiment dictionaries suitable for Korean text analysis in the context of finance. For this reason, the training set was created by randomly selecting 10% of the sentences from each prospectus, and the sentence classification task on the training set was performed after reading each sentence in person. Then, based on the training set, a Support Vector Machine model was utilized to predict the tone of sentences in the test set. Finally, the machine learning model calculated the percentages of positive, neutral, and negative sentences in each prospectus. To predict the price movement of an IPO stock, four different machine learning techniques were applied: Logistic Regression, Random Forest, Support Vector Machine, and Artificial Neural Network. According to the results, models that use quantitative variables using technical analysis and prospectus tone variables together show higher accuracy than models that use only quantitative variables. More specifically, the prediction accuracy was improved by 1.45% points in the Random Forest model, 4.34% points in the Artificial Neural Network model, and 5.07% points in the Support Vector Machine model. After testing the performance of these machine learning techniques, the Artificial Neural Network model using both quantitative variables and prospectus tone variables was the model with the highest prediction accuracy rate, which was 61.59%. The results indicate that the tone of a prospectus is a significant factor in predicting the price movement of an IPO stock. In addition, the McNemar test was used to verify the statistically significant difference between the models. The model using only quantitative variables and the model using both the quantitative variables and the prospectus tone variables were compared, and it was confirmed that the predictive performance improved significantly at a 1% significance level.

Development of Sentiment Analysis Model for the hot topic detection of online stock forums (온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발)

  • Hong, Taeho;Lee, Taewon;Li, Jingjing
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.187-204
    • /
    • 2016
  • Document classification based on emotional polarity has become a welcomed emerging task owing to the great explosion of data on the Web. In the big data age, there are too many information sources to refer to when making decisions. For example, when considering travel to a city, a person may search reviews from a search engine such as Google or social networking services (SNSs) such as blogs, Twitter, and Facebook. The emotional polarity of positive and negative reviews helps a user decide on whether or not to make a trip. Sentiment analysis of customer reviews has become an important research topic as datamining technology is widely accepted for text mining of the Web. Sentiment analysis has been used to classify documents through machine learning techniques, such as the decision tree, neural networks, and support vector machines (SVMs). is used to determine the attitude, position, and sensibility of people who write articles about various topics that are published on the Web. Regardless of the polarity of customer reviews, emotional reviews are very helpful materials for analyzing the opinions of customers through their reviews. Sentiment analysis helps with understanding what customers really want instantly through the help of automated text mining techniques. Sensitivity analysis utilizes text mining techniques on text on the Web to extract subjective information in the text for text analysis. Sensitivity analysis is utilized to determine the attitudes or positions of the person who wrote the article and presented their opinion about a particular topic. In this study, we developed a model that selects a hot topic from user posts at China's online stock forum by using the k-means algorithm and self-organizing map (SOM). In addition, we developed a detecting model to predict a hot topic by using machine learning techniques such as logit, the decision tree, and SVM. We employed sensitivity analysis to develop our model for the selection and detection of hot topics from China's online stock forum. The sensitivity analysis calculates a sentimental value from a document based on contrast and classification according to the polarity sentimental dictionary (positive or negative). The online stock forum was an attractive site because of its information about stock investment. Users post numerous texts about stock movement by analyzing the market according to government policy announcements, market reports, reports from research institutes on the economy, and even rumors. We divided the online forum's topics into 21 categories to utilize sentiment analysis. One hundred forty-four topics were selected among 21 categories at online forums about stock. The posts were crawled to build a positive and negative text database. We ultimately obtained 21,141 posts on 88 topics by preprocessing the text from March 2013 to February 2015. The interest index was defined to select the hot topics, and the k-means algorithm and SOM presented equivalent results with this data. We developed a decision tree model to detect hot topics with three algorithms: CHAID, CART, and C4.5. The results of CHAID were subpar compared to the others. We also employed SVM to detect the hot topics from negative data. The SVM models were trained with the radial basis function (RBF) kernel function by a grid search to detect the hot topics. The detection of hot topics by using sentiment analysis provides the latest trends and hot topics in the stock forum for investors so that they no longer need to search the vast amounts of information on the Web. Our proposed model is also helpful to rapidly determine customers' signals or attitudes towards government policy and firms' products and services.

MDP(Markov Decision Process) Model for Prediction of Survivor Behavior based on Topographic Information (지형정보 기반 조난자 행동예측을 위한 마코프 의사결정과정 모형)

  • Jinho Son;Suhwan Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.101-114
    • /
    • 2023
  • In the wartime, aircraft carrying out a mission to strike the enemy deep in the depth are exposed to the risk of being shoot down. As a key combat force in mordern warfare, it takes a lot of time, effot and national budget to train military flight personnel who operate high-tech weapon systems. Therefore, this study studied the path problem of predicting the route of emergency escape from enemy territory to the target point to avoid obstacles, and through this, the possibility of safe recovery of emergency escape military flight personnel was increased. based problem, transforming the problem into a TSP, VRP, and Dijkstra algorithm, and approaching it with an optimization technique. However, if this problem is approached in a network problem, it is difficult to reflect the dynamic factors and uncertainties of the battlefield environment that military flight personnel in distress will face. So, MDP suitable for modeling dynamic environments was applied and studied. In addition, GIS was used to obtain topographic information data, and in the process of designing the reward structure of MDP, topographic information was reflected in more detail so that the model could be more realistic than previous studies. In this study, value iteration algorithms and deterministic methods were used to derive a path that allows the military flight personnel in distress to move to the shortest distance while making the most of the topographical advantages. In addition, it was intended to add the reality of the model by adding actual topographic information and obstacles that the military flight personnel in distress can meet in the process of escape and escape. Through this, it was possible to predict through which route the military flight personnel would escape and escape in the actual situation. The model presented in this study can be applied to various operational situations through redesign of the reward structure. In actual situations, decision support based on scientific techniques that reflect various factors in predicting the escape route of the military flight personnel in distress and conducting combat search and rescue operations will be possible.

An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis (R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템)

  • Lee, Choongseok;Lee, Suk Joo;Choi, Byounggu
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.79-96
    • /
    • 2012
  • As the pace of competition dramatically accelerates and the complexity of change grows, a variety of research have been conducted to improve firms' short-term performance and to enhance firms' long-term survival. In particular, researchers and practitioners have paid their attention to identify promising technologies that lead competitive advantage to a firm. Discovery of promising technology depends on how a firm evaluates the value of technologies, thus many evaluating methods have been proposed. Experts' opinion based approaches have been widely accepted to predict the value of technologies. Whereas this approach provides in-depth analysis and ensures validity of analysis results, it is usually cost-and time-ineffective and is limited to qualitative evaluation. Considerable studies attempt to forecast the value of technology by using patent information to overcome the limitation of experts' opinion based approach. Patent based technology evaluation has served as a valuable assessment approach of the technological forecasting because it contains a full and practical description of technology with uniform structure. Furthermore, it provides information that is not divulged in any other sources. Although patent information based approach has contributed to our understanding of prediction of promising technologies, it has some limitations because prediction has been made based on the past patent information, and the interpretations of patent analyses are not consistent. In order to fill this gap, this study proposes a technology forecasting methodology by integrating patent information approach and artificial intelligence method. The methodology consists of three modules : evaluation of technologies promising, implementation of technologies value prediction model, and recommendation of promising technologies. In the first module, technologies promising is evaluated from three different and complementary dimensions; impact, fusion, and diffusion perspectives. The impact of technologies refers to their influence on future technologies development and improvement, and is also clearly associated with their monetary value. The fusion of technologies denotes the extent to which a technology fuses different technologies, and represents the breadth of search underlying the technology. The fusion of technologies can be calculated based on technology or patent, thus this study measures two types of fusion index; fusion index per technology and fusion index per patent. Finally, the diffusion of technologies denotes their degree of applicability across scientific and technological fields. In the same vein, diffusion index per technology and diffusion index per patent are considered respectively. In the second module, technologies value prediction model is implemented using artificial intelligence method. This studies use the values of five indexes (i.e., impact index, fusion index per technology, fusion index per patent, diffusion index per technology and diffusion index per patent) at different time (e.g., t-n, t-n-1, t-n-2, ${\cdots}$) as input variables. The out variables are values of five indexes at time t, which is used for learning. The learning method adopted in this study is backpropagation algorithm. In the third module, this study recommends final promising technologies based on analytic hierarchy process. AHP provides relative importance of each index, leading to final promising index for technology. Applicability of the proposed methodology is tested by using U.S. patents in international patent class G06F (i.e., electronic digital data processing) from 2000 to 2008. The results show that mean absolute error value for prediction produced by the proposed methodology is lower than the value produced by multiple regression analysis in cases of fusion indexes. However, mean absolute error value of the proposed methodology is slightly higher than the value of multiple regression analysis. These unexpected results may be explained, in part, by small number of patents. Since this study only uses patent data in class G06F, number of sample patent data is relatively small, leading to incomplete learning to satisfy complex artificial intelligence structure. In addition, fusion index per technology and impact index are found to be important criteria to predict promising technology. This study attempts to extend the existing knowledge by proposing a new methodology for prediction technology value by integrating patent information analysis and artificial intelligence network. It helps managers who want to technology develop planning and policy maker who want to implement technology policy by providing quantitative prediction methodology. In addition, this study could help other researchers by proving a deeper understanding of the complex technological forecasting field.

Response Modeling for the Marketing Promotion with Weighted Case Based Reasoning Under Imbalanced Data Distribution (불균형 데이터 환경에서 변수가중치를 적용한 사례기반추론 기반의 고객반응 예측)

  • Kim, Eunmi;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.29-45
    • /
    • 2015
  • Response modeling is a well-known research issue for those who have tried to get more superior performance in the capability of predicting the customers' response for the marketing promotion. The response model for customers would reduce the marketing cost by identifying prospective customers from very large customer database and predicting the purchasing intention of the selected customers while the promotion which is derived from an undifferentiated marketing strategy results in unnecessary cost. In addition, the big data environment has accelerated developing the response model with data mining techniques such as CBR, neural networks and support vector machines. And CBR is one of the most major tools in business because it is known as simple and robust to apply to the response model. However, CBR is an attractive data mining technique for data mining applications in business even though it hasn't shown high performance compared to other machine learning techniques. Thus many studies have tried to improve CBR and utilized in business data mining with the enhanced algorithms or the support of other techniques such as genetic algorithm, decision tree and AHP (Analytic Process Hierarchy). Ahn and Kim(2008) utilized logit, neural networks, CBR to predict that which customers would purchase the items promoted by marketing department and tried to optimized the number of k for k-nearest neighbor with genetic algorithm for the purpose of improving the performance of the integrated model. Hong and Park(2009) noted that the integrated approach with CBR for logit, neural networks, and Support Vector Machine (SVM) showed more improved prediction ability for response of customers to marketing promotion than each data mining models such as logit, neural networks, and SVM. This paper presented an approach to predict customers' response of marketing promotion with Case Based Reasoning. The proposed model was developed by applying different weights to each feature. We deployed logit model with a database including the promotion and the purchasing data of bath soap. After that, the coefficients were used to give different weights of CBR. We analyzed the performance of proposed weighted CBR based model compared to neural networks and pure CBR based model empirically and found that the proposed weighted CBR based model showed more superior performance than pure CBR model. Imbalanced data is a common problem to build data mining model to classify a class with real data such as bankruptcy prediction, intrusion detection, fraud detection, churn management, and response modeling. Imbalanced data means that the number of instance in one class is remarkably small or large compared to the number of instance in other classes. The classification model such as response modeling has a lot of trouble to recognize the pattern from data through learning because the model tends to ignore a small number of classes while classifying a large number of classes correctly. To resolve the problem caused from imbalanced data distribution, sampling method is one of the most representative approach. The sampling method could be categorized to under sampling and over sampling. However, CBR is not sensitive to data distribution because it doesn't learn from data unlike machine learning algorithm. In this study, we investigated the robustness of our proposed model while changing the ratio of response customers and nonresponse customers to the promotion program because the response customers for the suggested promotion is always a small part of nonresponse customers in the real world. We simulated the proposed model 100 times to validate the robustness with different ratio of response customers to response customers under the imbalanced data distribution. Finally, we found that our proposed CBR based model showed superior performance than compared models under the imbalanced data sets. Our study is expected to improve the performance of response model for the promotion program with CBR under imbalanced data distribution in the real world.