• Title/Summary/Keyword: dechlorination

Search Result 175, Processing Time 0.025 seconds

Wet Treatment of Fly Ash From Municipal Waste Incinerator with Sulfuric Acid as a Neutralizing Agent (황산(黃酸)을 중화제(中和劑)로 사용(使用)하는 소각(燒却)비산재의 습식(濕式) 처리(處理))

  • Eum, Nam-Il;Song, Young-Jun;Lee, Gye-Seung;Yoon, Si-Nae;Kim, Youn-Che;Jang, Yoon-Ho;Shin, Kang-Ho;Park, Charn-Hoon
    • Resources Recycling
    • /
    • v.15 no.6 s.74
    • /
    • pp.16-24
    • /
    • 2006
  • In this study, the neutralization and dechlorination process of MWI(Municipal Waste Incinerator) fly ash with $H_2SO_4$ are investigated to recover HCI, which is delivered from the reaction of chloride in the ash and sulfuric acid. The coarse crystalline gypsum and fine impurity containing heavy metal are also separated by 500# wet screening followed by recrystallization of the dechlorinated ash mainly made of $CaSO_4$. As a results, Using 100g MWI fly ash and 85g cone. sulfuric acid as raw material, 52.6g hydrochloric acid with 35% assay and 116.9g crystalline gypsum with 98% or more assay are recovered. In this process, 7.85g fine impurity containing heavy metal and 2.65g coarse impurity are also separated.

Reductive dechlorination of tetrachloroethylene by bimetallic catalysts on hematite in the presence of hydrogen gas

  • Choi, Kyunghoon;Lee, Nara;Lee, Woojin
    • Advances in environmental research
    • /
    • v.3 no.2
    • /
    • pp.151-162
    • /
    • 2014
  • Among the combination of 4 different second metals and 3 different noble metals, Ni 10%-Pd 1%/hematite (Ni(10)-Pd(1)/H) showed best tetrachloroethylene (PCE) removal (75.8%) and production of non-toxic products (39.8%) in closed batch reactors under an anaerobic condition. The effect of environmental factors (pH, contents of Ni and Pd in catalyst, and hydrogen gas concentration) on the reductive dechlorination of PCE by Pd-Ni/hematite catalysts was investigated. PCE was degraded less at the condition of Ni(5)/H (13.7%) than at the same condition with Ni(10)/H (20.6%). Removals of PCE were rarely influenced by the experimental condition of different Pd amounts (Pd(1)/H and Pd(3)/H). Acidic to neutral pH conditions were favorable to the degradation of PCE, compared to the alkaline condition (pH 10). Increasing Ni contents from 1 to 10% increased the PCE removal to 89.8% in 6 hr. However, the removal decreased to 74.2% at Ni content of 20%. Meanwhile, increasing Pd contents to 6% showed no difference in PCE removal at Pd content of more than 1%. Increasing H2 concentration increased the removal of PCE until 4% H2 which was maximumly applied in this study. Chlorinated products such as trichloroethylene, 1,1-dichloroethylene, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, and vinyl chloride were not observed while PCE was transformed to acetylene (24%), ethylene (5%), and ethane (11%) by Ni(10)-Pd(1)/H catalyst in 6hr.

Determination of byproducts after treatment in PCBs-containing transformer oils (PCBs 함유 절연유의 처리 후 부산물 배출특성 연구)

  • Shin, Sun Kyoung;Park, Jin Soo;Kang, Young Yeul;Hwang, Seung Ryul;Kim, Young Sik
    • Analytical Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.201-211
    • /
    • 2008
  • The treatment efficiency of PCBs containing wastes has been investigated. The samples treated by electron beam and de-chlorination method were analyzed to verify the byproducts before treatment and after treatment. In the treated samples by electron beam irradiation, PCBs were not detected by comparing the peak matching using the Korean official waste test method. On the other hand, PCBs congeners were detected by analyzing individual isotope method using HRGC/HRMS. Most of PCB congeners in waste were decomposed to 3-chlorobiphenyls, lower chlorinated congener produced during the treatment of electron beam. In the chemical dechlorination treatment, it was found that the concentrations of PCBs in treated samples were lower than those of regulation criteria in Waste & POPs management law and the after treatment concentration were satisfied to the regulation criteria. Also, dioxins were not observed after the physio-chemical treatment processes of PCBs containing wastes.

Identification of Active Agents for Reductive Dechlorination in Cement/Fe(II) Systems (시멘트와 Fe(II)을 이용한 환원성 탈염소화반응의 유효반응성분 규명)

  • Kim, Hong-Seok;Lee, Yu-Jung;Kim, Ha-Yan;Hwang, In-Seong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.35-42
    • /
    • 2006
  • Experimental study was conducted to identify the active agent for reductive dechlorination of TCE in cement/Fe(II) systems. Several potential materials-hematite (${\alpha}-Fe_2O_3$), lepidocrocite (${\gamma}$-FeOOH), akaganeite (${\beta}$-FeOOH), ettringite ($Ca_6Al_2(SO_4)_3(OH)_{12}$)-that are cement components or parts of cement hydrates were tested if they could act as reducing agents by conducting TCE degradation experiments. From the initial degradation experiments, hematite was selected as a potential active agent. The pseudo-first-order degradation rate constant ($k\;=\;0.637\;day^{-1}$) for the system containing 200 mM Fe(II), hematite and CaO was close to that ($k\;=\;0.645\;day^{-1}$) obtained from the system containing cement and 200 mM Fe(II). CaO, which was originally added to simulate pH of the cement/Fe(II) system, was found to play an important role in degradation reactions. The reactivity of the hematite/CaO/Fe(II) system initially increased with increase of CaO dosage. However, the tendency declined in the higher CaO dosage region, implying a saturation type of behavior. The SEM analysis revealed that the hexagonal plane-shaped crystals were formed during the reaction with increasing degradation efficiency, which was brought about by increasing the CaO dosage. It was suspected that the crystals could be portlandite or green rust ($SO_4$) or Friedel's salt. The XRD analysis of the same sample identified the peaks of hematite, magnetite/maghemite, green rust ($SO_4$). Either instrumental analysis predicted the presence of the green rust ($SO_4$). Therefore, the green rust ($SO_4$) would potentially be a reactive agent for reductive dechlorination in cement/Fe(II) systems.

A Comparison of the Experiment Results and the Radical Degradation Pathways in PCE through Atomic Charge Calculation

  • Lee, Byung-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.492-497
    • /
    • 2016
  • The intermediate product resulting from the radical degradation experiment of PCE and the atomic charge gained through Gaussian03W were compared against each other. The result was that the ratio of PCE radical degradation was almost 98% or higher after the 9 hr point in reaction time. The reaction speed constant was $0.16hr^{-1}$ and it followed the first reaction. We could see that at each location of the PCE molecule, dechlorination happened at a point where the negative atomic charge was the greatest. Moreover, the intermediate product of PCE radical degradation that was confirmed in the experiment and literature coincided exactly with the intermediate product in the atomic charge calculation. Therefore, when the atomic charge is calculated, the radical degradation pathway of the organic chlorine compound could be forecast.

Transformation of cis-1,2-Dichlororethylene and its Epoxide by a Butane-Grown Mixed Culture

  • Kim, Young;Lewis Semprini
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.147-152
    • /
    • 2004
  • Aerobic cometabolism of cis-1,2-dichloroethylene (c-DCE) and c-DCE epoxide by a butane-grown mixed culture was evaluated. Transformation of c-DCE resulted in the concomitant generation of c-DCE epoxide. Chloride release studies showed nearly complete oxidative dechlorination of c-DCE (approximately 75%). Mass spectrometry confirmed tile presence of a compound with mass-to-charge-fragment ratios of 112, 83, 48, and 35. The values are in agreement with the spectra of a chemically synthesized c-DCE epoxide. Some evidences indicating the involvement of the monooxygenase in the transformation of c-DCE epoxide are: 1) $O_2$ requirement for c-DCE transformation and butane degradation; 2) butane inhibition on c-DCE transformation and vice versa; 3) the inactivation of c-DCE and c-DCE epoxide transformations by acetylene (a known monooxygenase inactivator); and 4) tire inhibition of c-DCE epoxide transformation by c-DCE.

  • PDF

Development of Continuous Dechlorination Process with High Efficiency for the Industrial Utilization of Waste Plastic Fuel (폐플라스틱 연료의 산업체 이용을 위한 연속식 고효율 탈염공정개발)

  • Chung, Soo-Hyun;Kim, Sang-Guk;Woo, Je-Kyung;Na, Jeong-Geol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.423-435
    • /
    • 2005
  • 본 연구는 PVC를 포함한 혼합플라스틱을 연료화하는데 있어서 가장 큰 장애요인으로 되어있는 염소분을 효율적으로 제거하기 위한 목적으로 진행되었다. 염소성분을 원천적으로 제거하기 위해서는 PVC 내에 함유된 염소분을 제거하는 것이 관건이며 원천탈염을 통하여 제거하지 않으면 총괄 염소분의 변화가 없기 때문에 실제로 연료사용에는 한계가 있는 경우가 많다. 본 연구는 PVC중 56% 이상 함유되어 있는 염소성분을 연속식 스크루 반응기에 의하여 가열하여 제거하는 방식을 사용하였으며 각 공정의 변수별로 제거효율을 분석하여 최적조업조건에 대한 분석을 실시하였다. 일반적인 공정조업조건은 공급량, 혼합 플라스틱의 점도, 2차 반응기의 온도, 스크루 회전수 등이며 이 가운데 가장 결정적인 조건은 가열온도 변수이며 여타의 최적조업조건 하에서 $300^{\circ}C$ 이상인 경우에는 90% 이상의 탈염효율을 유지할 수 있음을 알 수 있었다.

  • PDF

Effects of Electron Acceptor and Electron Donor on Biodegradation of $CCl_4$by Biofilms (Electron Donor 및 Electron Acceptor의 농도가 생물활성대형성 및 유해폐기물 처리에 미치는 영향)

  • Bae, Woo-Keun;Bruce E. Rittmann
    • Environmental Analysis Health and Toxicology
    • /
    • v.6 no.3_4
    • /
    • pp.149-154
    • /
    • 1991
  • Biodegradation of carbon tetrachloride (CTC) in denitrifying and aerobic columns was investigated under various conditions of electron-acceptor and electron-donor availability. CTC removal increased when the electron-acceptor (nitrate) injection was stopped in the denitrifying column; however, CTC remova1 decreased when electron donor (acetate) was deleted in the denitrifying and the aerobic column. Small fractions of the CTC removed appeared as chloroform, indicating that reductive dechlorination of CTC was occurring. The results from the denitrifying column support the hypothesis that CTC behaves as an electron acceptor that competes for the pool of available electrons inside the bacterial cells.

  • PDF

Synthesis of poly(dialkyl or monoalkyl)silanes as silicon carbide precursors for ceramic matrix composites (탄화규소 선구물질로서의 폴리(디알킬 또는 모노알킬)실란들의 합성과 세라믹 복합체 응용)

  • Lee, Gyu-Hwan
    • Analytical Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • Polyalkylsilanes such as poly(dialkyl)silanes and poly(monoalkyl)silanes were synthesized by sonochemical dechlorination-condensation method from (dialkyl or monoalkyl)chlorosilanes with sodium metal. Those polyalkylsilanes were analyzed for the properties such as thermal behaviors from TGA analysis and obtained ceramic yields of 10-20% for poly(dialkyl)silanes and 40-60% for poly(monoalkyl)silanes. Ceramic composite discs were prepared by the combined mixture of polyalkylsilanes and SiC powder and were tested by TGA and analyzed by SEM and XRD for the application as binder for ceramic composite precursors.

A Pathway for 4-Chlorobenzoate Degradation by Pseudomonas sp. S-47

  • Seo, Dong-In;Chae, Jong-Chan;Kim, Ki-Pil;Kim, Young-Soo;Lee, Ki-Sung;Kim, Chi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.96-100
    • /
    • 1998
  • Pseudomonas sp. S-47 degraded 4-chlorobenzoate (4CBA) to 4-chlorocatechol (4CC) that was subsequently ring-cleaved to form 5-chloro-2-hydroxymuconic semialdehyde. These intermediate compounds were identified by GC-mass spectrometry and UV-visible spectrophotometry. 5-chloro-2-hydroxymuconic acid converted from 5-chloro-2- hydroxymuconic semialdehyde (5C-2HMS) was dechlorinated to produce 2-hydroxypenta-2,4-dienoic acid (2HP-2,4DA) by the strain. These results indicate that Pseudomonas sp. S-47 degrades 4CBA to 2HP-2,4DA via a novel pathway including the meta-cleavage of 4CC and dechlorination of 5C-2HMS.

  • PDF