• Title/Summary/Keyword: decay resistance

Search Result 113, Processing Time 0.031 seconds

Decay Resistance and Effectiveness of CCA Preservative against Decay on the 4 Imported Softwoods (수입침엽수(輸入針葉樹) 4수종(樹種)의 내후성(耐朽性) 및 CCA계(系) 목재방부제(木材防腐劑) 처리(處理)에 따른 방부효과(防腐效果))

  • Lee, Jong Shin;Kim, Young Sik;Han, Kie Sun
    • Korean Journal of Agricultural Science
    • /
    • v.22 no.1
    • /
    • pp.42-48
    • /
    • 1995
  • With the aim to investigation of decay resistance and optimum concentration in chrome-copper-arsenic(CCA) preservative treatment on the imported softwoods from Siberia and North america, preservative absorption after CCA impregnation, weight losses and degradation patterns by decay fungi were examined. The density and latewood rate of Siberia softwoods(Spruce and Larch) were higher than those of North america softwoods(Douglas-fir and Western hemlock), resulting in the decrease of the CCA preservative absorption in the Siberia softwoods. In the case of untreated softwoods, decay resistance against Coriolus versicolor was lower than against Tyromyces palustris. For CCA treated softwoods, preservative effectiveness increased with increase in concentration of CCA solution. When treated with 0.7% CCA solution, efficiency value was more than 80 and 90 for C. versicolor and T. palustris, respectively. From this results, in the CCA preservative treatment for imported softwoods, it can be concluded that optimum concentration of CCA solution is approximately 0.7%. The absorption of CCA preservative distributed in the range of 3.8 and $5.5kg/m^3$. After exposure to testing fungi, in the untreated softwoods, bore holes formed in the cell walls and bordered pits, moreover, bordered pit canals enlarged by the fungi. However, 0.5% CCA treated softwoods was almost no deterioration in the cell walls and bordered pits due to decay.

  • PDF

The Experiment of the persistent current operation characteristics using Bi-2223 HTS coil (Bi-2223고온 초전도 코일의 영구전류 운전특성 실험)

  • 최세용;나완수;김정호;주진호;하홍수;오상수
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.291-293
    • /
    • 2002
  • In this paper, we fabricated a persistent current mode magnet using Bi-2223 HTS tapes. The coil system consists of double pancake magnet and a persistent current switch and jointed them with solder. Persistent current mode operation of the system was measured experimentally by the decay behavior of the current. We found that resistive component of the system including flux flow resistance lead the exponentially field decay with time.

  • PDF

A Study on the Surface Analysis of Plasma-Treated PET Film (플라즈마 처리된 PET 필름의 표면분석에 관한 연구)

  • Lim Kyung-Bum;Choi Hoon-Young;Lee Seok-Hyun;Lee Duck-Chool
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.12
    • /
    • pp.596-600
    • /
    • 2004
  • In this study, the surface properties of PET film were analyzed after plasma surface treatment. After plasma treatment of surface roughness and XPS were evaluated to analyze the chemical property, while the surface potential decay and surface resistance rate was measured to analyze the electric관 characteristic. When plasma discharge treatment was conducted for less than 10 minutes, the electrical insulating property was improved by evaporation of low molecular weight materials and cleaning of surface. However, when the treatment was conducted for more than 10 minutes, the insulating property was decreased due to excessive discharge energy. Analyses of chemical characteristics showed that 10-minute treatment resulted in increase of C-O and O=C-O bonds. However, when treated for more than 10 minutes. they were relatively decreased.

Nondestructive Methods for the Detection of Internal Decay and the Vitality Measurement of Old-Giant Trees (노거수 활력 측정 및 내부 부후 검출을 위한 비파괴검사법)

  • Gao, Yuliang;Cha, Byeong Jin
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.1
    • /
    • pp.144-157
    • /
    • 2009
  • Nondestructive methods to check the vitality of trees and to find out internal decay of old-giant trees include the use of electrical resistance, ultrasound transmission time, microdrilling, and infrared thermography etc. Among these, ultrasound transmission offers some advantages compared to others such as it is an entirely nondestructive detection method and it can be applied to very big trees. However, the ultrasound equipment is comparatively expensive and not broadly spread yet. On the other hand, Shigometer is versatile to be applied to check vitality of the tree and find out internal decay. Electrical conductivity of plant tissues is a very useful characteristics to determine the vitality and internal decay of trees. Electrical resistance of cambial area tells about the vitality of a tree and electrical resistance of heartwood reveals discoloration or decay of it. For determination of the vitality of the tree, the standard equation for calibration of measured electrical resistances should be developed by measuring and analyzing electrical resistance from at least 30-40 trees of the same species with that tree. All the factors, especially tree species, diameter of the stem, and temperature, which can altered the electrical resistance of trees, should be taken into consideration in the development of the equation. If the standard equation is developed for old-giant trees that we should conserve, it will be very useful. In addition, periodical and continued measuring of a certain tree will help to determine the condition of the tree by comparing the measurement with accumulated data of the tree. Measuring electrical resistance of wood might not require the standard equation. But it also needs to check electrical resistance of sound wood of the same tree species. If the stems that should be examined is thicker than 40cm, it is better to use the ultrasound measurement combined to Shigometer.

Study on Red and Black Heartwood Properties of Cryptomeria Japonica in Southern Region of Korea

  • Won, Kyung-Rok;Jung, Su-Young;Yoo, Byung-Oh;Hong, Nam-Euy;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.753-761
    • /
    • 2017
  • The heartwood (HW) of Japanese cedar (Cryptomeria japonica) has usually a reddish color. But some trees have black-colored heartwood (BHW). BHW of Japanese cedar has a low commercial value because of the appearance. Therefore, in this study, a comparative analysis was conducted to evaluate the differences in the physical, mechanical, and inorganic element properties, and decay resistance of red-colored heartwood tree (RHW) and BHW. The physical properties showed significant difference between sapwood (SW) and HW, but there was no significant difference between RHW and BHW. From the results of mechanical properties, no significant difference was recognized in SW of RHW, HW of RHW, SW of BHW, and HW of BHW. There were decay resistance differences between RHW and BHW in HW, and between HW and SW in both RHW and BHW, respectively. The magnesium (Mg), potassium (K), and calcium (Ca) contents had significant differences between SW and HW in both RHW and BHW. In this present study, the decay resistances and the contents of Mg and K were higher in HW than in SW both for RHW and BHW, while these measurements were lower in RHW than in BHW. Therefore, BHW was considered to be worthy as a high-quality material as RHW.

Dimensional Stability, Color Change, and Durability of Boron-MMA Treated Red Jabon (Antochephalus macrophyllus) Wood

  • PRIADI, Trisna;ORFIAN, Gema;CAHYONO, Tekat Dwi;ISWANTO, Apri Heri
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.315-325
    • /
    • 2020
  • Boron compound had many advantages as wood preservative, but it was prone to leaching. Improving boron preservation was required to extend the service life of fast growing and low durability red jabon (Antochephalus macrophyllus) hardwood. This study aimed to evaluate the dimensional stability, color change and durability of modified red jabon wood by double impregnation with boron and methyl methacrylate (MMA) and heat treatment. Impregnation I used boric acid or borax, and impregnation II used MMA, while heat treatment used temperatures of 90 ℃ or 180 ℃ for 4 hours. The dimensional stability, leachability, water absorption, color change and decay resistance of modified red jabon wood were tested. The results showed that MMA impregnation increased the dimensional stability of red jabon wood, while the leaching and water absorption in the wood significantly reduced. Heating at 180 ℃ caused less water absorption and higher dimensional stability of the wood than that of heating at 90 ℃. Impregnation with boric acid and MMA followed by heating at 90 ℃ resulted in the highest wood ASE, 89.9%. The color change (∆E*) of wood increased significantly after MMA impregnation and heating at 180 ℃. Boric acid impregnation caused more resistant wood than borax impregnation against decay fungi and termites. Impregnation with boric acid and MMA followed with heating at 180 ℃ increased significantly the wood resistance against decay fungi and termites.

Evaluation of Physico-Mechanical Properties and Durability of Larix kaempferi Wood Heat-Treated by Hot Air (고온 열기 처리에 의한 낙엽송재의 물리·역학적 성능 및 내부후성능 변화 고찰)

  • Park, Yonggun;Han, Yeonjung;Park, Jun-Ho;Chang, Yoon-Seong;Yang, Sang-Yun;Chung, Hyunwoo;Kim, Kyungjung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.334-343
    • /
    • 2015
  • This study was carried out to evaluate quantitatively some properties (density, equilibrium moisture content, shrinkage, water vapor adsorption, water absorptivity, compressive strength, bending strength, hardness and decay resistance) of Larix kaempferi lumber which was heat-treated by hot air and has been used commercially in Korea. Equilibrium moisture content of the heat-treated wood was decreased with increase of hydrophobicity. Dimensional stability of the wood was improved with decrease of shrinkage, water vapor adsorption and free water absorptivity. Also, with the thermo-chemical changes of wood component and lower equilibrium moisture content, decay resistance and compressive strength of heat-treated wood were increased. But, bending strength and hardness of wood were decreased.

The design, construction and operational characteristics of the superconducting persistent current switch (초전도 영구전류스위치의 설계. 제작 및 특성시험)

  • 오윤상;이상진;최경달;류강식;고태국
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.193-198
    • /
    • 1996
  • Low power superconducting persistent current switch(PCS) for the superconducting magnet systems in the persistent mode was developed and its experimental results were analyzed when the system was charged or discharged. The multifilament NbTi wire with Cu matrix was used for the PCS. The constructed NbTi superconducting switch with superconducting magnet system operated successfully. It also operated on-off switching action with good stabilization. The maximum operating current in persistent mode was 60A (at 1T). In persistent current mode, the decay of the persistent current at 60A was observed. Its decay was 3.55% in 60 min. It is possible to make the persistent current switch with the better decaying of persistent current if some problems for joint resistance are solved.

  • PDF

A study on the weld nugget formation in resistance spot welding of aluminum alloy (알루미늄 합금의 저항 점 용접시 용접너깃의 형성에 대한 연구)

  • 나석주;오세진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.661-669
    • /
    • 1986
  • In this study, the resistance spot welding process of an aluminum alloy was analyzed through the numerical simulation including the electric contact resistance and the heat generation in the electrode. The finite element model was used to solve the electro-thermal responses in weld cycles. The resistance of the contact area was represented as the contact element modeling, but the thermal resistance between the contact surfaces was neglected. Welding tests of Alclad 2024-T3 aluminum alloy were made not only to get the input data for the numerical simulation, but also to compare the numerical results. The contact resistance was determined initially by the contact resistance tests and assumed to decay exponentially up to the solidus temperature. The temperature distributions and dynamic resistance obtained numerically were in good agreement with the experimental results. Numerical results revealed that nugget growth depends mainly on the heat generated in the workpiece and its contact area. The heat generated in the electrode has, however, only a little effect on the nugget growth, and the heat generation in the electrode-workpiece interface is initially high but decrease repidly.

Effects of Acid Concentration and the Addition of Copper/Boron Salts on the Efficacy of Okara-based Wood Preservatives (두부(豆腐)비지 산(酸) 가수분해물(加水分解物)로 조제(調製)한 목재방부제(木材防腐劑)에서 산(酸) 농도(濃度)와 구리/붕소계(硼素系) 염(鹽) 첨가(添加)에 따른 방부능(防腐能)의 영향(影響))

  • Jeong, Han-Seob;Kim, Ho-Yong;Ahn, Sye-Hee;Choi, In-Gyu;Oh, Sei-Chang;Han, Gyu-Seong;Yang, In
    • Resources Recycling
    • /
    • v.18 no.5
    • /
    • pp.52-62
    • /
    • 2009
  • This research was carried out to formulate environmentally friendly wood preservatives with okara and to investigate the effects of the acid concentration used for the hydrolysis of okara and salt type on the decay resistance of the preservatives. Okara-based preservatives were formulated with okara hydrolyzates, which were prepared with 0, 1%, and 2% sulfuric acid at $25^{\circ}C$ for 1 hr, and salts such as copper chloride and/or sodium borate. The preservatives were treated into wood blocks by vacuum-pressure method, and then the treated wood blocks were leached in $70^{\circ}C$ hot water for 72 hrs. The fungal treatments of the leached wood blocks were conducted by brown-rot fungus, Tyromyces palustris, and white-rot fungus, Trametes versicolor, to examine the decay resistance of the preservatives. As the acid concentration used for hydrolysis of okara increased, the treat-ability and decay resistance of the preservatives were improved, which the leachability was decreased. Wood blocks treated with the okara/copper or okara/copper/borax, showed very good decay resistance against T. palustris and T. versicolor. However, wood blocks treated with the okara/borax and okara-free preservative solutions, were observed the fungal decay by T. palustris. The optimal conditions for the preparation of okara-based wood preservatives were formulated with okara hydrolyzed with 1% sulfuric acid, copper chloride and borax.