• Title/Summary/Keyword: decay properties

Search Result 365, Processing Time 0.023 seconds

A Study of a Decay Parameter for the Dark Adaptation Function on the retina (망막에서 암순응 함수의 Decay parameter 연구)

  • Kim, Yong Geun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.2
    • /
    • pp.145-150
    • /
    • 2000
  • The adaptation for a right source on the retina consists of the light-dark adaptation's two curves for a time by the rod-cone receptor. We obtained the adaptation for a time to measure the threshold intensities, it was two decay curves by the center of a rod-cone break. It could be represented the dark adaptation by a exponential decay function consisting of $T_{min}$, $a_r$, $a_c$, $T_{0(r)}$, $T_{0(c)}$, $t_b$, $t_c$'s parameters. The curves of a $t_b$ below and a $t_b$ above showed the adaptation sensitivity of the cone and the rod. The exponential decay function was well applied to the dark adaptation in difference retinal positions, in contrally fixated fields, in luminous, as age etc. It could be used the decay parameter as the index because of representing the properties of the dark adaptation's function.

  • PDF

Formation of CH3NH3PbBr3 Perovskite Nanocubes without Surfactant and Their Optical Properties

  • Kirakosyan, Artavazd;Yun, Seokjin;Kim, Deul;Choi, Jihoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.79-85
    • /
    • 2018
  • We systematically investigated the optical properties of sub-micron sized methylammonium lead tribromide ($CH_3NH_3PbBr_3$) cubes in the range of 100 to 700 nm, which were prepared by a surfactant-free precipitation method. We found that despite the strong absorbance, their photoluminescence quantum yield (PLQY) is very low as 0.009~0.011 % for whole range of sizes. Surfactant-free synthesis approach results in nanocubes that has no surface passivating reagents (e.g. surfactants) on their surface. As-prepared particles contain a large number of surface defects that may cause the low PLQY. The role of the surface defects were investigated in their photoluminescence decay process, which can be correlated with the particle size. Larger particles are characterized by a slower decay rate compared to smaller particles due to a large number of surface defects in the smaller particles that trap more excitons in the fluorescence decay process. These experimental results provide new insights into the fundamental relationship between surface state and optical properties.

Assessing the long-term durability and degradation of rocks under freezing-thawing cycles

  • Seyed Zanyar Seyed Mousavi;Mohammad Rezaei
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.51-67
    • /
    • 2023
  • In this research, the degradation rate of physical properties of the Angouran pit bedrock (calc-schist) is first investigated under the specific numbers of freeze-thaw (F-T) cycles. Then, the durability of calc-schist specimens against the F-T cycle number (N) is examined considering the mechanical parameters, and using the decay function and half-time techniques. For this purpose, point load strength (IS(50)), second durability index (Id2), Brazilian tensile strength (BTS), and compressive (VP) and shear (VS) wave velocities of calc-schist specimens are measured after 0, 7, 15, 40, and 75 N. For comparing the degradation rate of mechanical properties of available rock types on the Angouran mine walls, these tests are also carried out on the limestone and amphibolite schist specimens beside the calc-schist. According to test results, the exponential regression models are developed between the mechanical parameters of rock specimen's and N variable. Also, the long-term durability of each rock type versus N is studied using the decay function and half-time techniques. Results indicated that the degradation rate differs for the above rock types in which amphibolite schist and calc-schist specimens have the highest and least resistance against the N, respectively. The obtained results from this study can play a key role in the optimal design of the mine's final walls.

A STUDY ON THE BIOMECHANICAL PROPERTIES OF ORTHODONTIC RUBBER ELASTIC MATERIALS (교정용 고무탄성재료의 생역학적 성질에 관한 연구)

  • Song, Hyun-Sup;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.21 no.3
    • /
    • pp.563-580
    • /
    • 1991
  • The purpose of this study was to investigate and compare the biomechanical properties of orthodontic rubber elastic materials. Latex bands, nylon-covered elastic threads and polyurethane-based elastic modules, delivering $205{\pm}10$ grams force at 30mm stretching state were selected and stored separately in 3 environments-air ($22{\pm}3^{\circ}C$), distilled water ($37{\pm}1^{\circ}C$), or natural saliva ($37{\pm}1^{\circ}C$). And, the amount of remaining force and permanent elongation of each sample were measured on Instron at interval of 1 hour, 6 hours, 12 hours, 24 hours, 1 week, and 2 weeks. So the data derived were analyzed statistically. The results were as follows: 1. Force decay and permanent elongation of all materials increased with time lapsed; elastic module, latex band and nylon-covered elastic thread in that order of the amount of force decay; elastic module, elastic thread, latex band in that order of the amount of permanent elongation. 2. Among environmental conditions, force decay and permanent elongation in natural saliva, most increased, and those in air, least increased. 3. There was a negative correlation between force decay and permanent elongation. 4. Force decay and permanent elongation were most affected by the material itself, time and environments in that order. 5. After 24 hours in saliva, the percentage of remaining force in elastic module was 51.9% (107.37grams); in latex band, 83.2%(172.62grams); in elastic thread, 85.0%(179.25grams). After 2 weeks in saliva, the percentage of remaining force in elastic module was 42.9%(88.75grams); in latex band, 74.5%(154.50grams); in elastic thread, 77.6%(163.75grams).

  • PDF

Decay Process of Charge Distribution in E-beam Irradiated Polymers (전자빔 조사 폴리머의 전자 분포의 축퇴 과정)

  • Choi, Yong-Sung;Kim, Hyung-Gon;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.69-72
    • /
    • 2008
  • Decay processes of accumulated charge in e-beam irradiated polymers during elevating temperature are observed using pulsed electro-acoustic measurement system. Since the polymeric materials have many superior properties such as light-weight, good mechanical strength, high flexibility and low cost, they are inevitable materials for spacecrafts. In space environment, however, the polymers sometimes have serious damage by irradiation of high energy charged particles. When the polymers of the spacecraft are irradiated by high energy charged particles, some of injected charges accumulate and remain for long time in the bulk of the polymers. Since the bulk charges sometimes cause the degradation or breakdown of the materials, the investigation of the charging and the decay processes in polymeric materials under change of temperature is important to decide an adequate material for the spacecrafts. By measuring the charge behavior in e-beam irradiated polymer, such as polyimide or polystyrene, it is found that the various accumulation and decay patterns are observed in each material. The results seem to be useful and be helpful to progress in the reliability of the polymers for the spacecraft.

  • PDF

Surface Analysis of Silicone Polymer used as Insulating Material by XPS and Surface Voltage Decay (XPS 및 Surface voltage decay를 이용한 실리콘 절연재료의 표면분석)

  • Youn, B.H.;Lee, K.T.;Park, C.R.;Kim, N.R.;Seo, Y.J.;Huh, C.S.;Cho, H.G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.236-239
    • /
    • 2002
  • Surface states of silicone polymer treated by plasma were investigated by the analysis by x-ray photoelectron spectroscopy (XPS) and surface voltage decay. Plasma treatment causes the silica-like oxidative layer, which is confirmed with XPS, and lowers surface resistivity with increasing the plasma treatment time. Using the decay time constant of surface voltage, the calculated surface resistivity was compared with the value directly measured by a voltage-current method. A good agreement between two methods was obtained. In addition, we estimated the thermal activation energy for surface conduction, Based on our results, we could understand the relationship between surface chemical states and surface electrical properties.

  • PDF

Decay Process of Charge Distribution in E-Beam Irradiated Polymers (E-빔 조사된 폴리머의 전하 분포의 축퇴 과정)

  • Yun, Ju-Ho;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.329-330
    • /
    • 2007
  • Decay processes of accumulated charge in e-beam irradiated polymers during elevating temperature are observed using pulsed electro-acoustic measurement system. Since the polymeric materials have many superior properties such as light-weight, good mechanical strength, high flexibility and low cost, they are inevitable materials for spacecrafts. In space environment, however, the polymers sometimes have serious damage by irradiation of high energy charged particles. When the polymers of the spacecraft are irradiated by high energy charged particles, some of injected charges accumulate and remain for long time in the bulk of the polymers. Since the bulk charges sometimes cause the degradation or breakdown of the materials, the investigation of the charging and the decay processes in polymeric materials under change of temperature is important to decide an adequate material for the spacecrafts. By measuring the charge behavior in e-beam irradiated polymer, such as polyimide or polystyrene, it is found that the various accumulation and decay patterns are observed in each material. The results seem to be useful and be helpful to progress in the reliability of the polymers for the spacecraft.

  • PDF

A Study on the Surface Degradation Properties of Epoxy / Glass fiber Treated with Ultraviolet Rays (자외선 처리된 Epoxy/Glass Fiber의 표면 열화 특성에 관한 연구)

  • Lee, Baek-Su;Lee, Deok-Chul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.86-91
    • /
    • 1999
  • In order to analyse the degradation process of epoxy/glass fiber for outdoor condition, FRP laminate was exposed to the wavelength of ultraviolet rays and evaluated by comparing contact angle, surface resistivity, surface potential decay, and ESCA spectrum respectively. As irradiation energy are increased, the surface properties were steeply decreased in the range of 300[nm]. But the measured values within the scope of400[nm]∼440[nm] showed a increase as compared with the untreated ones. Also, fromthe result of ESCA spectrum, it was confirmed plenty of oxygen groups on the spot showing the maximum decrease of surface properties and the existence of ether groups on the surface of coloring phase. We can conclude that the degradation phenomena on the surface of epoxy composites are dominated by the induction of ester and carboxyl groups.

  • PDF

Transmittance and Responce Properties of the Light Transmission Controllable Films Prepared with Dipole Particles Suspension (분극성입자 현탁액을 이용한 투과도 가변필름의 투과도 및 응답특성)

  • 이영우;김응수;유병석;이정훈
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.131-139
    • /
    • 1995
  • In order to improve transmittance and response properties, various compositions of light controllable films were prepared by phase separation method. The optical and response properties were measured with the variation of PMMA/suspension ratio and block copolymer/light polarizing particles. According to the increase of the PMMA/suspension ratio, the separated droplets of suspension were interconnected in the film. Decay time was 2.6 sec when PMMA/suspension ratio was 0.5 : 1 and ΔT(difference of the transmittance at OFF/ON states) was reduced with increasing of the ratio of PMMA/suspension. On block copolymer/light polarizing particles ratio variation, the highest transmittance of the film was 67.4% when its ratio was 0.6 : 1 and decay time was varied from 2.15 to 46.6 sec as block copolymer content increased 0.2 : 1 to 1 : 1.

  • PDF

The Influence of Dry Treatments on the Surface Degradation and Dielectric Properties in Fiber Reinforced Plastics (건식 열화처리가 FRP의 표면 열화와 유전특성에 미치는 영향)

  • 이백수;이덕출;정의남;유도현;김종택
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.88-95
    • /
    • 1998
  • In this paper, we investigated the change of wettability, surface potential decay and dielectric properties caused by ultraviolet-treated, thermal-treated and discharge-treated FRP(fiber reinforced plastics) respectively for finding out the influence of dry treatments effected to electrical characteristics on the surface of polymer composites. For the change of wettability, the contact angle of thermal-treated specimen with the high temperature of $200^{\circ}C$ increased. But that of UV-treated and discharge- treated specimen decreased. The characteristic of surface potential decay shows the tendency of the remarkable decrease on UV-treated and discharge-treated specimens, but no difference on thermal-treated specimen compared with untreated one. Also, for the dielectric properties, it shows the increase at large on the treated specimens and especially, the remarkable increase on thermal-treated one.

  • PDF