• Title/Summary/Keyword: decay map of wood

Search Result 4, Processing Time 0.021 seconds

Wood decay Detection by Non-destructive Methods (비파괴 방법을 이용한 목재의 부후 탐지)

  • Son, Dong-Won;Lee, Dong-Heub
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.74-81
    • /
    • 2004
  • The ultrasonic non-destructive method was used for wood decay test. The temperature change and moisture contents of wood were estimated how the ultrasonic wave velocity changes. The relationship between weight loss of wood decayed by T. palustris and ultrasonic wave velocity was investigated. The non-destructive methods of different condition of logwood were estimated. Decay map of old wood was made by non destructive methods. Through these tests, we can accumulate the data to judge the degree of wood decay. The decay map of wood could be used for the analysis of old wood.

Decay Resistance of Fire-Retardant Treated Wood

  • Lee, Hyun-Mi;Yang, Jae-Kyung;Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.7-13
    • /
    • 2004
  • In this study, the Korean pine wood (Pinus densiflora Sieb. et Zucc) and Italian poplar wood (Populus euramericana Guinier) was treated with a mixture of monoammonium phosphate (MAP) and boric acid. Their usability as fire retardant and as decay-resistant construction and interior materials were evaluated by testing of chemicals, corrosion rate and absorption rate, weight loss and chemical contents. An experiment was performed to compare treated pine wood and Italian poplar wood. According to the results, Italian poplar wood had higher specific gravity and retention of chemicals than pine wood, and treated wood showed higher decay-resistance than untreated one. Weight loss was less in treated wood than untreated one because the degree of decay was lower in the former than the latter. Corrosion rate and absorption rate met the KS standard for wood preservative performance. The chemical contents analysis was carried out to determine the degree of decay and it was found that the preservative effect of chemical treatment was lower in Italian poplar wood than in pine wood.

Determination of Decay Hazard Index (Scheffer Index) in Korea for Exterior Above-Ground Wood (지상부 사용(H3 등급) 목재의 국내 부후위험지수(Scheffer Index) 결정)

  • Kim, Tae-Gyun;Ra, Jong-Bum;Kang, Sung-Mo;Wang, Jieying
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.531-537
    • /
    • 2011
  • This research was performed to evaluate the decay hazard for exterior above-ground wood in Korea. The Scheffer index (decay hazard index) was determined using the climate data of 72 different locations obtained from the website of Korea Meteorological Administration (KMA), and the wood decay hazard map was created. Jeju, Seogwipo, Gwangju, and Jeonju showing above 65 of Scheffer index values were considered to be high decay hazard zones. The rest showed the values in the range between 35 and 65, meaning the moderate decay hazard zones. However, the annual Scheffer indexes largely varied, which suggests that many moderate decay zones could turn into high decay regions with the climate change. Especially, considering that Korean weather tends to turn into the weather of subtropical region, the decay hazard of Korea seems to have high possibility to be gradually increased.

Change of Decay Hazard Index (Scheffer Index) for Exterior Above-Ground Wood in Korea (국내 지상부 사용(H3) 목재의 부후위험지수(Scheffer Index) 변화)

  • Kim, Taegyun;Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.732-739
    • /
    • 2014
  • This research was performed to investigate the effect of recent climate changes on wood decay hazard index (Scheffer index) in Korea. The index was determined using a climate data of 58 different locations obtained from the website of Korea Meteorological Administration (KMA), and the wood decay hazard index was determined at the intervals of 10 years. Most of regions in Korea except Juju island showed wood decay hazard index values between 35 and 65, considered to be moderate decay hazard zones. But in recent 10 years (2003~2012), the wood decay hazard index was rapidly increased, resulting in showing many high decay hazard regions. The trend may be explained by the in crease of temperature and precipitation. The recent climate change of Korea turning into the weather of subtropical region may explain the increase of wood decay hazard index.