• Title/Summary/Keyword: decay fungi

Search Result 96, Processing Time 0.024 seconds

Predicting Influence of Changes in Indoor Air Temperature and Humidity of Wooden Cultural Heritages by Door Opening on Their Conservation Environment (개방에 따른 실내 온습도 변화가 목조문화재 보존환경에 미치는 영향 예측)

  • Kim, Min-Ji;Shin, Hyun-Kyeong;Choi, Yong-Seok;Kim, Gwang-Chul;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.798-803
    • /
    • 2015
  • This study was conducted to predict the effect of door opening in wooden cultural heritages (WCHs) on their conservation environment. For this prediction, measured relative humidity (RH) and surface wood moisture content (MC) of inner part of wood columns in open wooden building and neighboring closed wooden building were compared with minimum RH, including the duration of minimum RH, and MC required for spore germination and resultant growth of wood-degrading fungi reported in some literatures. Moisture conditions, namely RH of inside wooden building and MC of wood was unsuitable for decay and sap-stain fungi all the year round; however, moisture conditions during summer season was suitable for spore germination and resultant growth of surface mold fungi, regardless of door opening. When compared, the duration of minimum (75%) or higher RH and the number of wood columns with MC level greater than the minimum MC (15%) during summer season, the surface mold related to the conservation environment of inside wooden building was somewhat better in open building than in closed building. Rather, doors should be opened in closed building for reducing indoor RH as a necessary measure during summer season when outdoor RH is high.

Development of Fungal Sapstain in Logs of Japanese Red Pine and Korean Pine (소나무와 잣나무 원목에서 변재변색 발생)

  • Kim, Gyu-Hyeok;Kim, Jae-Jin;Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.128-133
    • /
    • 2002
  • This study was conducted to investigate the influence of storage time on the sapstain development of Japanese red pine and Korean pine logs during storage in log yard, and their stain characteristics. Japanese red pine and Korean pine trees were harvested and cut into logs in mid January of 2001. These logs were transported to the two local sawmills where they were closely stacked in remote parts of log yard. The logs were then sampled destructively by cutting seven to nine 3-cm long discs along the length of each log at intervals of 3, 4, 5, 6, and 8 month after felling. The stain coverage and maximal radial penetration of stain were measured from the discs of the sampled logs after the isolation of causal staining fungi. The sapstain was primarily infested by the attack of bark beetles and the species of bark beetle was identified as Tomicus piniperda. The main fungal species isolated from stained wood was Ophiostoma species. Based on the present study, the logs could be stored in log yard until May without stain; but stain development was rapid after May and the severity of stain increased proportionally with storage time. Korean pine was more susceptible to fungal stain than Japanese red pine. During summer storage, decay started to develop in logs and the main species were identified as Tyromyces sp. and Schizophyllum commune. Information provided in this paper would be very useful to develop more effective control strategies for sapstain prevention in Japanese red pine and Korean pine logs.

Postharvest biological control of garlic blue mold rot caused by Pantoea agglomereans and its mode of action

  • Kwon, Mi-Kyung;Kim, Yong-Ki;Shim, Hong-Sik;Park, Kyung-Suk;Kim, Choong-Hoe
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.104.1-104
    • /
    • 2003
  • To screen for potential biocontrol agents against postharvest disease of garlics caused by Penicillium hirsutum, a total of 933 isolates (432 fungi and 501 bacteria) were isolated from the rhizoshere or rhizoplane of garlics. Among them, Pantoea agglomerans isolate 59-4 (Pa 59-4) was selected for a potential biocontrol agent by in vivo wounded garlic bulb assay, When the spore suspension (10$\^$5/ spores/$m\ell$) of Penicillium hirsutum was co-inoculated with spore or cell suspension of each fungal or bacterial isolate on wounded garlics, the isolate highly suppressed disease development. Soaking garlic bulbs in the suspension of Pa 59-4 significantly reduced garlic decay from p. hirsutum. However, Pa 59-4 did not inhibit the mycelial growth of P. hirsutum in dual-culture with P. hirsutum on Tryptic soy agar. In order to elucidate mode of action of Pa 59-4 nutrient competition between Pa 59-4 and P. hirsutum was investigated using tissue culture plates with cylinder inserts containing defusing membrane reported by Janisiewicz et al. The results showed that Pa 59-4 effectively suppressed spore germination and mycelial growth of blue mold in the low concentration (0.5%) of garlic juice, but did not suppress those of blue mold in the higher concentration (5%) of garlic juice. This result suggests that the mechanism in biocontrol of garlic blue mold by Pa 59-4 may involve in nutrient competition with P. hirsutum on garlic bulbs.

  • PDF

Evaluation on Relations between the Oxalic Acid Producing Enzyme, Oxaloacetase from Tyromyces palustris, and Wood Decaying Activity (Tyromyces palustris의 수산생성효소인 Oxaloacetase와 목질 분해와의 관계 구명)

  • Son, Dong-Weon;Lee, Dong-Heub;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.48-53
    • /
    • 1996
  • Brown rot fungus, Tyromyces palustris, has been reported to cause the loss of strength accelerated by oxalate, a non-enzymatic low molecular weight acid, with minute weight loss of decaying wood in early stage. The production of oxalate in relation to wood decaying and the presence of oxaloacetase. an oxalate producing enzyme, were identified during the process. Tyromyces palustris produced the largest amount of oxalate among brown rot fungi. In order to find out the cleavage of pulp fiber, we submerged pulp fiber in oxalate solution and the results showed that the number of short pulp fiber was highly increased, compared with control solution. The pH of decaying wood was decreased to 1.77 which was close to that of saturated oxalate solution, pH 1.2, Thus, the oxalate was thought to be accumulated in the decaying wood, The oxaloacetase which accelerates production of oxalate was derived from fungus, and the production of oxalate by the enzyme was determined by using on UV/Vis spectrophotometer. Therefore, the oxalate was found to be produced by oxaloacetase during decay. The oxalate may cause the acid-hydrolysis of cellulose and hemicellulose. The oxalate was thought to reduce the degree of polymerization and increase the enzyme activity, which resulted in rapid loss of strength in early stage-an identical feature of brown rot fungus.

  • PDF

Cultivation and Nutritional Value of Prominent Pleurotus spp.: An Overview

  • Raman, Jegadeesh;Jang, Kab-Yeul;Oh, Youn-Lee;Oh, Minji;Im, Ji-Hoon;Lakshmanan, Hariprasath;Sabaratnam, Vikineswary
    • Mycobiology
    • /
    • v.49 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • Pleurotus species are commercially essential mushrooms and widely cultivated throughout the world. The production of Pleurotus mushrooms alone accounts for around 25% of that total cultivated mushrooms globally. In America and Europe, Pleurotus species are considered specialty mushrooms, whereas, in Korea, their cultivation is economically profitable, and it is one of the highly consumed species. Pleurotus species are predominantly found in tropical forests and often grow on fallen branches, dead and decaying tree stumps, and wet logs. Biographical studies have shown that the Pleurotus genus is among the more conspicuous fungi that induce wood decay in terrestrial ecosystems worldwide due to its formidable lignin-modifying enzymes, including laccase and versatile peroxidases. Pleurotus species can be grown easily due to their fast colonization nature on diversified agro-substrates and their biological efficiency 100%. Pleurotus mushrooms are rich in proteins, dietary fiber, essential amino acids, carbohydrates, water-soluble vitamins, and minerals. These mushrooms are abundant in functional bioactive molecules, though to influence health. Pleurotus mushrooms are finding unique applications as flavoring, aroma, and excellent preservation quality. Apart from its unique applications, Pleurotus mushrooms have a unique status delicacy with high nutritional and medicinal values. The present review provides an insight into the cultivation of Pleurotus spp. using different agro-waste as growth substances paying attention to their effects on the growth and chemical composition.

Understanding the Technical Properties of Delonix regia (HOOK.) RAF. Wood: A Lesser Used Wood Species

  • Funke Grace Adebawo;Olayiwola Olaleye Ajala;Olaoluwa Adeniyi Adegoke;Timileyin Samuel Aderemi
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.1
    • /
    • pp.55-64
    • /
    • 2023
  • Properties of a lesser-used wood species were investigated to determine its potential for structural utilization. Trees of Delonix regia were felled and sampled at the base, middle and top and then sectioned to inner wood, middle wood, and outer wood for variation across the axial and radial directions. Hence, selected physical and mechanical properties as well as natural durability of D. regia along the radial and axial directions were examined. Obtained data were analyzed using analysis of variance (ANOVA) at α0.05. There was no significant difference in the Moisture content (MC) of the wood but specific gravity (SG) decreased from base to top ranging from 0.35-0.44. Water absorption, volumetric swelling, and volumetric shrinkage range from 46.18-51.86%, 2.57-4.02%, and 2.26-3.96% respectively along the axial plane. The weight loss for graveyard exposure and accelerated laboratory decay test ranged from 25.14-48.00% and 32.02-44.45% respectively. Modulus of Rupture and Modulus of Elasticity values range from 29.42-72.68 Nmm2 and 3,834.54-8,830.37 Nmm2 respectively. The SG values has confirmed the species as a medium density wood and values of other properties tested showed that the wood is dimensional stable and moderately resistance to fungi and termite. Hence, it could be used for light construction purposes such as furniture and other interior woodwork.

Analysis of fungal hyphae, distribution and motility of bacteria in oral cavity according to halitosis (구취에 따른 구강 내 형태별 세균의 분포 및 운동성, 진균 균사 분석)

  • Kim, Do Kyeong;Byeon, You-Kyeong;Choi, Hyun-Ji;Lee, Ga-Ram;Choi, Yu-Ri;Choi, Yu-Jin
    • Journal of Korean Academy of Dental Administration
    • /
    • v.6 no.1
    • /
    • pp.28-35
    • /
    • 2018
  • Halitosis is primarily caused by bacterial decay. The bacteria, which originate from biofilms such as dental plaque, show abnormal proliferation due to dental caries, periodontal diseases, soft tissue infections, and tongue diseases. Most studies on halitosis have exclusively focused on gram-negative bacteria in the oral cavity rather than on general oral microorganisms including oral fungi. This study analyzed oral fungal hyphae, as well as distribution and motility of oral microorganisms, and provided basic data on the control of halitosis. Our results revealed that the greater is the number of cocci bacteria, the higher is the halitosis value, or bad breath value (BBV), suggesting that cocci have a strongly positive correlation with halitosis (r=0.379, p=0.030). Moreover, there was no significant difference in the morphology or distribution of motile bacteria and motility score, with respect to BBV. Lastly, we investigated the relationship between halitosis and oral fungal hyphae. We found that a higher BBV corresponded with a greater number of fungal hyphae and that patients with fungal hyphae scored a higher BBV. However, this result was not statistically significant. In conclusion, this study provided the preliminary data on oral microorganisms and halitosis, but further studies are needed to analyze the relationship between oral microorganisms and halitosis.

Bioactivities and Isolation of Functional Compounds from Decay-Resistant Hardwood Species (고내후성 활엽수종의 추출성분을 이용한 신기능성 물질의 분리 및 생리활성)

  • 배영수;이상용;오덕환;최돈하;김영균
    • Journal of Korea Foresty Energy
    • /
    • v.19 no.2
    • /
    • pp.93-101
    • /
    • 2000
  • Wood of Robinia pseudoacacia and bark of Populus alba$\times$P. glandulosa, Fraxinus rhynchophylla and Ulmus davidiana var. japonica were collected and extracted with acetone-water(7:3, v/v) in glass jar to examine whether its bioactive compounds exist. The concentrated extracts were fractionated with hexane, chloroform, ethylacetate and water, and then freeze-dried for column chromatography and bioactive tests. The isolated compounds were sakuranetin-5-O-$\beta$-D-glucopyranoside from Populus alba $\times$Pl glandulosa, 4--ethyoxy-(+)-leucorobinetinidin frm R. pseudoacacia and fraxetion from F. rhynchophylla and were characterized by $^1H$ and$^{13}C $ NMR and positive FAB-MS. Decay-resistant activity was expressed by weight loss ratio and hyphae growth inhibition in the wood dust agar medium inoculated wood rot fungi. R. pseudoacacia showed best anti-decaying property in both test and its methanol untreated samples, indicating higher activity than methanol treated samples in hyphae grwoth test. In antioxidative test, $\alpha$-tocopherol, one of natural antioxidants, and BHT, one of synthetic antioxidants, were used as references to cmpare with the antioxidant activities of the extacted fractions. Ethylacetate fraction of F. rhynchophylla bark indicated the hightest activity in this test and all fractions of R. pseudiacacia extractives also indicated higher activities compared with the other fractions. In the isolated compounds, aesculetin isolated from F. rhynchophylla bark showed best activity and followed by robonetinidin from R. pseudoacaica.

  • PDF

Studies on the Relative Durability of Useful Woods Grown in Korea to the Parasitic Wood Destroying Fungi (목재부후균의(木材腐朽菌)의 기생(寄生)에 의한 한국산(韓國産) 유용목재(有用木材)의 비교내후성(比較耐朽性) 연구(硏究))

  • Chung, Dae-Kyo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.1-15
    • /
    • 1987
  • This experiment was undertaken for the purpose of investigation of relative durability about thirty sorts of the korean native wood and nine sorts of the wood destroying fungi Polystictus versicolor, Irpex consors. Poria vaporaria, Merulius lacrymans, Schizophyllum commune, Trametes pini, Lenzites betulina, Paxillus panuoides by means of a laboratory methods. The results obtained are; (from the table 2 to 10) 1. By measuring the percentage of loss in weight with regard to Polystictus versicolor, the sap wood contained in Junipeus chinesis was calculated at 18.2%, therefore it is much higher durability than any others and the sap wood contained in Pinus densiflora was measured at 44.10%, therefore it is much lower durability than any others. 2. By measuring the percentage of loss in weight with regard to Irpex consors, the heart wood contained in Butula schmidtii was calculated at 1.23%, therefore durability is very high and the heart wood contained in Quercus dentata was calculated at 26.79%, therefore durability is very low. 3. By measuring the percentage of lass in weight with regard to Lenzites betulina, the heart wood contained in Betula schmidtii was calculated at 5.33%, therefore it is much higher durability than any others and the sap wood with regard to Abies holophylla was measured at 45.48%, therefore durability is very low. 4. By measuring the percentage of loss in weight with regard to Poria vaporaria, the sap wood contained in Fraxinus rhynchophylla was calculated at 5.57%, therefore durability is very high and the sap wood contained in Paulownia coreana was calculated at 35.6%, therefore it is much lower durability than any others. 5. By measuring the percentage of loss in weight with regard to Merulius lacrymans, the heart wood contained in Castanea crenata was measured at 0.09% and in the next place, the heart wood contained in Abies holophylla calculated at 0.15% did not decay almost and the sap wood contained in Cornus controversa was measured at 32.88%, therefore it is lower durability than any others. 6. By measuring the percentage of loss in weight with regard to Schizophyllum commune, the sap wood cantained in Junipensis chinensis was calculated at 1.09%, therefore durability is very high and the sap wood contained in Populus deltoides was calculated at 36.87%, it is much lower durability than any others. 7. By measuring the percentage of loss ill weight with regard to Trametes pini, the sap wood contained in Robinia pseudo-acacia was calculated at 1.33%, therefore durability is very high and the sap wood contained in Comus controversa was calculated at 33.19%, it is much lower durability than any others. 8. By measuring the percentage of loss ill weight with regard to Paxillus panuoides. the heart wood contained in Zelkova serrata was calculated at 1.73%, therefore durability is very high and the sap wood contained in Populus deltoides was calculated at 42.30%, therefore durability in very low. 9. By measuring the percentage of loss in weight with regard to Dardalea quercina, the heart wood contained in Castanea crenata was calculated at 0.92%, therefore durability is very high and the sap wood contained in Cornus controversa was calculated at 32.00% therefore durability is very low. The above results are summarized as follows 1. Durability between the heart wood and the soft wood find that it is nonsignificant, while durability is higher heart wood than sap wood. 2. Special sorts including in the element like Castanea cenata, Robinia pseudo-acacia, Juniperus chinensis and heart wood like Betula schmiditii and Styrax obasia are highly durable and soft wood like Cornus controversa, Populus davidiana, Salix koreensis, Celtis jessensis are lowly durable in general. 3. Among the wood destroying fungi Paxillus panuoides is highly durable and as follows. Poria vaporaria, Lenzites betulina and the Daedalea quercina is less in general and Irpex consors, Mersulius lacrymans are a middle degree.

  • PDF

Evaluation of Physico-mechanical Properties and Durability of Larix kaempferi Wood Heat-treated by Superheated Steam (과열증기 열처리 낙엽송재의 물리·역학적 성능 및 내후성능 평가)

  • Park, Yonggun;Park, Jun-Ho;Yang, Sang-Yun;Chung, Hyunwoo;Kim, Hyunbin;Han, Yeonjung;Chang, Yoon-Seong;Kim, Kyoungjung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.776-784
    • /
    • 2016
  • In this study, green Larix kaempferi lumber was heat-treated by using superheated steam (SHS) at a pilot scale and then various physico-mechanical properties of the heat-treated wood were evaluated and compared with the properties of conventional hot air (HA) heat-treated wood. Decay resistance of brown rot fungi and compressive strength parallel to the grain of the SHS heat-treated wood without occurrence of drying check from green lumber were increased. On the other hand, density, equilibrium moisture content, shrinkage, and bending strength of the SHS heat-treated wood were lower than those of the conventional HA heat-treated wood. Because heat transfer and thermal hydrolysis of SHS heat treatment was accelerated by a large amount of water, the effect of SHS heat treatment on the physico-mechanical properties was higher than that of HA heat treatment at the similar conditions of temperature and time. From the results of this study, because green lumber can be heat-treated without occurrence of cracks or checks by using SHS and similar heat treatment effect on the physico-mechanical properties of wood can be produced despite a low temperature or short time of heat treatment, it is expected that heat time and energy consumption could be reduced by using SHS.