• Title/Summary/Keyword: decay coefficient

Search Result 155, Processing Time 0.025 seconds

Travel Times of Radionuclides Released from Hypothetical Multiple Source Positions in the KURT Site (KURT 환경 자료를 이용한 가상의 다중 발생원에서의 누출 핵종의 이동 시간 평가)

  • Ko, Nak-Youl;Jeong, Jongtae;Kim, Kyung Su;Hwang, Youngtaek
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.281-291
    • /
    • 2013
  • A hypothetical repository was assumed to be located at the KURT (KAERI Underground Research Tunnel) site, and the travel times of radionuclides released from three source positions were calculated. The groundwater flow around the KURT site was simulated and the groundwater pathways from the hypothetical source positions to the shallow groundwater were identified. Of the pathways, three pathways were selected because they had highly water-conductive features. The transport travel times of the radionuclides were calculated by a TDRW (Time-Domain Random Walk) method. Diffusion and sorption mechanisms in a host rock matrix as well as advection-dispersion mechanisms under the KURT field condition were considered. To reflect the radioactive decay, four decay chains with the radionuclides included in the high-level radioactive wastes were selected. From the simulation results, the half-life and distribution coefficient in the rock matrix, as well as multiple pathways, had an influence on the mass flux of the radionuclides. For enhancing the reliability of safety assessment, this reveals that identifying the history of the radionuclides contained in the high-level wastes and investigating the sorption processes between the radionuclides and the rock matrix in the field condition are preferentially necessary.

Methodology to Predict Service Lives of Pavement Marking Materials (도로 차선 재료의 공용수명 예측방법)

  • Oh, Heung-Un;Lee, Hyun-Seock;Jang, Jung-Hwa;Kang, Jai-Soo
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.151-159
    • /
    • 2008
  • Performances of retroreflectivity vary place to place, according to traffic volumes and time lengths after striping, depending on pavement marking materials and colors. The present paper uses the nation wide data of retroreflectivity, which has been collected from freeways and then tries to develop the regression curve setting traffic volume and service life as independent variables and retroreflectivities as dependent variables. The DB system includes two year's measurement in $2005{\sim}2006$ over Korean freeway pavement marking at an interval of three months for the period. The mobile measurement system, a laserlux, was employed for the purpose. The DB has provided a lot of information about materials and performance of the specific pavement marking such as geometric features, traffic volumes, material characteristics and the installation date. This study provides the comparison of pavement marking performances under diversified conditions. Based on accumulated pavement marking performances, this study provides performance curves based on the diversified factors. The goal of the retroreflectivity modeling is to develop equations that can be used to estimate an average retroreflectivity of pavement markings as a function time since application and traffic volume. After representing the variation of retroreflectivities and estimating regression curves by linear, exponential, logarithmic and power function, the regression curve which had the highest coefficient of determination and the value similar to the last field measurement was regarded as the retroreflectivity decay model. As a result of verification, the decay model showed the signification within the 90% confidence level and especially showed the clear relation with field data according to increase of cumulative vehicle exposure. Accordingly, these models can be used to determine service lives, retroreflectivity degradation rates, and retroreflectivity of new markings.

  • PDF

Retardation Effect and Mobility of a Heavy Metal in a Sandy Soil (사질토양에서의 중금속의 지연효과와 이동성)

  • Kim, Dong-Ju;Baek, Doo-Sung
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.3
    • /
    • pp.155-161
    • /
    • 1998
  • Retardation effect of heavy metals in soils caused by adsorption onto the surfaces of solids particles is well known phenomenon. In this study, we investigated the retardation effect on the mobility of a Zn in a sandy soil by conducting batch and column tests. The column test consisted of monitoring the concentrations of effluent versus time known as a breakthrough curve (BTC). We used NaCl and ZnCl$_2$ solutions with the concentration of 10 g/L as a tracer, and injected them respectively into the inlet boundary of the soil sample as a square pulse type, and monitored the effluent concentrations at the exit boundary under a steady state condition using an EC-meter and ICP-AES. The batch test was conducted based on the standard procedure of equilibrating fine fractions collected from the soil with various initial ZnCl$_2$ concentrations, and analysis of Zn ions in the equilibrated solutions using ICP-AES. The results of column test showed that i) the peak concentration of ZnCl$_2$analyzed by ICP was far less than that of either NaCl or bulk electrical conductivity and ⅱ) travel times of peak concentrations for two tracers were more less identical. The relatively low concentration of Zn can be explained by ion exchange between Zn and other cations, and possible precipitation of Zn in the form of Zn(OH)$_2$due to high pH range (7.0∼7.9) of the effluent. The identical result of travel times of peak concentrations indicates that the retardation effect is not present in the soil. The only way to describe the prominent decrease of Zn ion was to introduce decay or sink coefficient in the CDE model to account for irreversible decrease of Zn ions in the aqueous phase.

  • PDF

A Study on the Determination of the Seasonal Heat Transfer Coefficient in KURT Under Forced Convection (강제대류시 계절에 따른 KURT 내 열전달계수 결정에 관한 연구)

  • Yoon, Chan-Hoon;Kwon, Sang-Ki;Hwang, In-Phil;Kim, Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.189-199
    • /
    • 2010
  • In a high-level waste (HLW) repository, heat is generated by the radioactive decay of the waste. This can affect the safety of the repository because the surrounding environment can be changed by the heat transfer through the rock. Thus, it is important to determine the heat transfer coefficient of the atmosphere in the underground repository. In this study, the heat transfer coefficient was estimated by measuring the indoor environmental factors in the Korea Atomic Energy Research Institute Underground Research Tunnel (KURT) under forced convection. For the experiment, a heater of 5 kw capacity, 2 meters long, was inserted through the tunnel wall in the heating section of KURT in order to heat up the inside of the rock to $90^{\circ}C$, and fresh air was provided by an air supply fan connected to the outside of the tunnel. The results showed that the average air velocity in the heating section after the provision of the air from outside of the tunnel was 0.81 m/s with the Reynolds number of 310,000~340,000. The seasonal heat transfer coefficient in the heating section under forced convection was $7.68\;W/m^2{\cdot}K$ in the summer and $7.24\;W/m^2{\cdot}K$ in the winter.

Development of a Light Extinction Coefficient Change Model according to the Growth Stage of Cucumber in a Greenhouse (온실 내 백다다기 오이의 생육단계에 따른 흡광계수 변화 모델 개발)

  • Ki Beom Jeon;Jong Hwa Shin
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Understanding the light environment in greenhouse cultivation and the light utilization characteristics of crops is important in the study of photosynthesis and transpiration. Also, as the plant grows, the form of light utilization changes. Therefore, this study aims to develop a light extinction coefficient model reflecting the plant growth. To measure the extinction coefficient, five pyranometers were installed vertically according to the height of the plant, and the light intensity by height was collected every second during the entire growing season. According to each growth stage in the early, middle, and late stages, the difference between the top and bottom light intensity tended to increase to 69%, 72%, and 81%. When leaf area index and plant height increased, the extinction coefficient decreased, and it showed an exponential decay relationship. Three-dimensional model reflecting the two growth indexes, the paraboloid had the lowest RMSE of 1.340 and the highest regression constant of 0.968. Through this study, it was possible to predict the more precise light extinction coefficient during the growing period of plants. Furthermore, it is judged that this can be utilized for predicting and analyzing photosynthesis and transpiration according to the plant height.

Estimation of the methane generation rate constant using a large-scale respirometer at a landfill site

  • Park, Jin-Kyu;Tameda, Kazuo;Higuchi, Sotaro;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.339-346
    • /
    • 2017
  • The objective of this study is the evaluation of the performance of a large-scale respirometer (LSR) of 17.7 L in the determination of the methane generation rate constant (k) values. To achieve this objective, a comparison between anaerobic (GB21) and LSR tests was conducted. The data were modeled using a linear function, and the resulting correlation coefficient ($R^2$) of the linear regression is 0.91. This result shows that despite the aerobic conditions, the biodegradability values that were obtained from the LSR test produced results that are similar to those from the GB21 test. In this respect, the LSR test can be an indicator of the anaerobic biodegradability for landfill waste. In addition, the results show the high repeatability of the tests with an average coefficient of variance (CV) that is lower than 10%; furthermore, the CV for the LSR is lower than that of the GB21, which indicates that the LSR-test method could provide a better representation of waste samples. Therefore, the LSR method allows for both the prediction of the long-term biodegradation potential in a shorter length of time and the reduction of the sampling errors that are caused by the heterogeneity of waste samples. The k values are $0.156y^{-1}$ and $0.127y^{-1}$ for the cumulative biogas production (GB21) and the cumulative oxygen uptake for the LSR, respectively.

ASSESSMENT OF CONDENSATION HEAT TRANSFER MODEL TO EVALUATE PERFORMANCE OF THE PASSIVE AUXILIARY FEEDWATER SYSTEM

  • Cho, Yun-Je;Kim, Seok;Bae, Byoung-Uhn;Park, Yusun;Kang, Kyoung-Ho;Yun, Byong-Jo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.759-766
    • /
    • 2013
  • As passive safety features for nuclear power plants receive increasing attention, various studies have been conducted to develop safety systems for 3rd-generation (GEN-III) nuclear power plants that are driven by passive systems. The Passive Auxiliary Feedwater System (PAFS) is one of several passive safety systems being designed for the Advanced Power Reactor Plus (APR+), and extensive studies are being conducted to complete its design and to verify its feasibility. Because the PAFS removes decay heat from the reactor core under transient and accident conditions, it is necessary to evaluate the heat removal capability of the PAFS under hypothetical accident conditions. The heat removal capability of the PAFS is strongly dependent on the heat transfer at the condensate tube in Passive Condensation Heat Exchanger (PCHX). To evaluate the model of heat transfer coefficient for condensation, the Multi-dimensional Analysis of Reactor Safety (MARS) code is used to simulate the experimental results from PAFS Condensing Heat Removal Assessment Loop (PASCAL). The Shah model, a default model for condensation heat transfer coefficient in the MARS code, under-predicts the experimental data from the PASCAL. To improve the calculation result, The Thome model and the new version of the Shah model are implemented and compared with the experimental data.

Numerical and Experimental Study on Linear Behavior of Salter's Duck Wave Energy Converter (비대칭 형상 파력발전 로터의 선형 거동에 대한 수치적·실험적 연구)

  • Kim, Dongeun;Poguluri, Sunny Kumar;Ko, Haeng Sik;Lee, Hyebin;Bae, Yoon Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.116-122
    • /
    • 2019
  • Among the various wave power systems, Salter's duck (rotor) is one of the most effective wave absorbers for extracting wave energy. The rotor shape is designed such that the front part faces the direction of the incident wave, which forces it to bob up and down due to wave-induced water particle motion, whereas the rear part, which is mostly circular in shape, reflects no waves. The asymmetric geometric shape of the duck makes it absorb energy efficiently. In the present study, the rotor was investigated using WAMIT (a program based on the linear potential flow theory in three-dimensional diffraction/radiation analyses) in the frequency domain and verified using OrcaFlex (design and analysis program of marine system) in the time domain. Then, an experimental investigation was conducted to assess the performance of the rotor motion based on the model scale in a two-dimensional (2D) wave tank. Initially, a free decay test (FDT) was carried out to obtain the viscous damping coefficient. The pitch response was extracted from the experimental time series in a periodic regular wave for two different wave heights (1 cm and 3 cm). In addition, the viscous damping coefficient was calculated from the FDT result and fluid forces, obtained from WAMIT, are incorporated into the final response of the rotor. Finally, a comparative study based on experimental and numerical results (WAMIT & OrcaFlex) was performed to confirm the performance reliability of the designed rotor.

Synthesis and Nonlinear Optical Properties of Novel T-type Polyester Containing Thiophene with Enhanced Thermal Stability

  • No, Hyo-Jin;Cho, You-Jin;Lee, Ju-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.429-434
    • /
    • 2010
  • A novel T-type polyester 7 containing 1-(2,5-dioxyphenyl)-2-{5-(1,2,2-tricyanovinyl)-2-thienyl}ethenes as nonlinear optical (NLO) chromophores, which are part of the polymer backbone, was prepared and characterized. Polyester 7 is soluble in common organic solvents such as dimethylsulfoxide and N,N-dimethylformamide. It showed a thermal stability up to $300^{\circ}C$ in thermogravimetric analysis thermogram and the glass-transition temperature ($T_g$) obtained from differential scanning calorimetry thermogram was around $113^{\circ}C$. The second harmonic generation (SHG) coefficient ($d_{33}$) of poled polymer films at 1,560 nm fundamental wavelength was around 1.85 pm/V. The dipole alignment exhibits a greater thermal stability even at $10^{\circ}C$ higher than $T_g$, and there is no SHG decay below $125^{\circ}C$ due to the partial mainchain character of the polymer structure, which is acceptable for nonlinear optical device applications.

A Study on the Stick-Slip Phenomenon of the Driveline System of a Vehicle in Consideration of Friction (마찰을 고려한 차량 동력전달계의 Stick-Slip 현상에 관한 연구)

  • 윤영진;홍동표;정태진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.4
    • /
    • pp.19-29
    • /
    • 1995
  • This paper discusses the stick-slip phenomenon of the driveline system of a vehicle in consideration of friction. Friction is operated on the between of flywheel and clutch disk. The expressions for obtaining the results have been derived from the equation of motion of a three degree of freedom frictional torsion vibration system which is made up driving part(engine, flywheel), driven part(clutch, transmission) and dynamic load part(vehicle body) by applying forth-order Rungekutta method. It was found that the great affect parameters of the stick-slip or stick motion were surface pressure force between flywheel and clutch disk, time decay parameter of surface pressure force and 1st torsional spring constant of clutch disk when driveline system had been affected by friction force. The results of this study can be used as basic design data of the clutch system for the ride quality improvement of a car.

  • PDF