• 제목/요약/키워드: decalcomania paper

검색결과 3건 처리시간 0.018초

전사법으로 제조한 SOFC용 YSZ 전해질 전사지의 치밀화 및 전기화학적 특성 (Densification and Electrochemical Properties of YSZ Electrolyte Decalcomania Paper for SOFCs by Decalcomania)

  • 조해란;최병현;안용태;백성현;노광철;박선민
    • 대한금속재료학회지
    • /
    • 제50권9호
    • /
    • pp.685-690
    • /
    • 2012
  • Decalcomania is a new method for SOFCs (solid oxide fuel cells) unit cell fabrication. A tight and dense $5{\mu}m$ Yttria-stabilized zirconia (8YSZ) electrolyte layer on anode substrate was fabricated by the decalcomania method. After 8YSZ as the electrolyte starting material was calcined at $1200^{\circ}C$, the particle size was controlled by the attrition mill. The median particle size (D50) of each 8YSZ was $39.6{\mu}m$, $9.30{\mu}m$, $6.35{\mu}m$, and $3.16{\mu}m$, respectively. The anode substrate was coated with decalcomania papers which were made by using 8YSZ with different median particle sizes. In order to investigate the effect of median particle sizes and sintering conditions on the electrolyte density, each sample was sintered for 2, 5 and 10 h, respectively. 8YSZ with a median particle size of $3.16{\mu}m$ which was sintered at $1400^{\circ}C$ for 10 had the highest density. With this 8YSZ, a SOFCs unit cell was manufactured with a $5{\mu}m$ layer by the decalcomania method. Then the unit cell was run at $800^{\circ}C$. The Open Circuit Voltage (OCV) and Maximum power density (MPD) was 1.12 V and $650mW/cm^2$, respectively.

전사지를 이용한 다전지식 평관형 고체산화물 연료전지 제작 및 셀 특성 (Fabrication and Cell Properties of Flattened Tube Segmented-in-Series Solid Oxide Fuel Cell-Stack Using Decalcomania Paper)

  • 안용태;지미정;박선민;신상호;황해진;최병현
    • 한국재료학회지
    • /
    • 제23권3호
    • /
    • pp.206-210
    • /
    • 2013
  • In the segmented-in-series solid-oxide fuel cells (SIS-SOFCs), fabrication techniques which use decalcomania paper have many advantages, i.e., an increased active area of the electrode; better interfacial adhesion property between the anode, electrolyte and cathode; and improved layer thickness uniformity. In this work, a cell-stack was fabricated on porous ceramic flattened tube supports using decalcomania paper, which consists of an anode, electrolyte, and a cathode. The anode layer was $40{\mu}m$ thick, and was porous. The electrolyte layers exhibited a uniform thickness of about $20{\mu}m$ with a dense structure. Interfacial adhesion was improved due to the dense structure. The cathode layers was $30{\mu}m$ thick with porous structure, good adhesion to the electrolyte. The ohmic resistance levels at 800, 750 and $700^{\circ}C$ were measured, showing values of 1.49, 1.58 and $1.65{\Omega}{\cdot}cm^2$, respectively. The polarization resistances at 800, 750 and $700^{\circ}C$ were measured to be 1.63, 2.61 and $4.17cm^2$, respectively. These lower resistance values originated from the excellent interfacial adhesion between the anode, electrolyte and cathode. In a two-cell-stack SOFC, open-circuit voltages(OCVs) of 1.915, 1.942 and 1.957 V and maximum power densities(MPD) of 289.9, 276.1 and $220.4mW/cm^2$ were measured at 800, 750 and $700^{\circ}C$, respectively. The proposed fabrication technique using decalcomania paper was shown to be feasible for the easy fabrication of segmented-in-series flattened tube SOFCs.

전사지를 이용 적층한 셀 구조 및 연료극 기능층 형성에 따른 출력 특성 (Power Densities According to Anode Functional Layers on the Manufactured SOFC Unit Cells Using Decalcomania Method)

  • 안용태;지미정;구자빈;최진훈;황해진;최병현
    • 한국재료학회지
    • /
    • 제22권11호
    • /
    • pp.626-630
    • /
    • 2012
  • The properties of SOFC unit cells manufactured using the decalcomania method were investigated. SOFC unit cell manufacturing using the decalcomania method is a very simple process. In order to minimize the ohmic loss of flattened tube type anode supports of solid oxide fuel cells(SOFC), the cells were fabricated by producing an anode function layer, YSZ electrolyte, LSM electrode, etc., on the supports and laminating them. The influence of these materials on the power output characteristics was studied when laminating the components and laminating the anode function layer between the anode and the electrolyte to improve the output characteristics. Regarding the performance of the SOFC unit cell, the output was 246 $mW/cm^2$ at a temperature of $800^{\circ}C$ in the case of not laminating the anode function layer; however, this value was improved by a factor of two to 574 $mW/cm^2$ due to the decrease of the ohmic resistance and polarization resistance of the cell in the case of laminating the anode function layer. The outputs appeared to be as high as 574 and 246 $mW/cm^2$ at a temperature of $800^{\circ}C$ in the case of using decalcomania paper when laminating the electrolyte layer using the in dip-coating method; however, the reason for this is that interfacial adhesion was improved due to the dense structure, which leads to a thin thickness of the electrolyte layer.