• Title/Summary/Keyword: debris flow hazard

Search Result 68, Processing Time 0.026 seconds

A Study on Debris Flow Landslide Disasters and Restoration at Inje of Kangwon Province, Korea (2006년 강원도 인제지역의 토석류 산사태 수해 및 복구에 관한 연구)

  • Lee, Cheol-Ju;Yoo, Nam-Jae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.99-105
    • /
    • 2009
  • The main purpose of this work is to analyse damages caused by debris flows during the heavy rainfalls at Inje of Kangwon Province, Korea. A series of site investigations have been carried out to survey the characteristics of debris flows occurred during the summer season of 2006. It has been found that major losses in human life and property are caused by discharge of soil and rock fragments from landslides. During the rainfall high precipitation rate of 113.5 mm/hour and 355 mm/day was recorded, which could happen at 80-500 year period. Comparing the rainfall record with the time of landslides being occurred, occurrence of the landslides is directly related to heavy rainfalls. At present, several debris barriers have been built at the valleys and natural slopes have been protected by the seed spray method. It is intended to propose an alternative of restoration of landslide damages and maintenance based on findings from the current study.

Study on the Terrestrial LiDAR Topographic Data Construction for Mountainous Disaster Hazard Analysis (산지재해 위험성 분석을 위한 지상 LiDAR 지형자료 구축에 관한 연구)

  • Jun, Kye Won;Oh, Chae Yeon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.105-110
    • /
    • 2016
  • Mountainous disasters such as landslides and debris flow are difficult to forecast. Debris flow in particular often flows along the valley until it reaches the road or residential area, causing casualties and huge damages. In this study, the researchers selected Seoraksan National Park area located at Inje County (Inje-gun), Gangwon Province-where many mountainous disasters occur due to localized torrential downpours-for the damage reduction and cause analysis of the area experiencing frequent mountainous disasters every year. Then, the researchers conducted the field study and constructed geospatial information data by GIS method to analyze the characteristics of the disaster-occurring area. Also, to extract more precise geographic parameters, the researchers scanned debris flow triggering area through terrestrial LiDAR and constructed 3D geographical data. LiDAR geographical data was then compared with the existing numerical map to evaluate its precision and made the comparative analysis with the geographic data before and after the disaster occurrence. In the future, it will be utilized as basic data for risk analysis of mountainous disaster or disaster reduction measures through a fine-grid topographical map.

Determining the Location of Urban Planning Measures for Preventing Debris-Flow Risks: Based on the MCDM Method (MCDM 기법을 이용한 도심지 토사재해 예방을 위한 도시계획적 대책 위치 결정방법 제안)

  • Moon, Yonghee;Lee, Sangeun;Kim, Soyoon;Kim, Myoungsoo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.103-114
    • /
    • 2017
  • The landslide disaster damage has been increased by mountain development, leading to construction of educational facilities, medical facilities, petty industrial facilities, and large housing complexes. Therefore, effective regulation is required as an effort in urban planning solutions. For suggesting specific mitigation strategies on urban landslide, this study aims to define evaluation criteria for urban planning management of debris-flow disaster. AHP (Analytic Hierarchy Process), one of the multiple criterion decision making methods, was utilized in this study. This study makes use of 16 sub-criteria under the framework of hazard, exposure, and vulnerability, and well-planned expert survey measures their weights. The weights are also applied to evaluate each grid in urban space (min $10{\times}10m$) and classify it with red, orange, yellow, or green grade so that areas at higher risk are clearly identified. This study concludes that the suggested method is useful to support a strategies for urban planning management of debris-flow disaster, particularly in a GIS base.

Analysis of debris flow simulation parameters with entrainment effect: a case study in the Mt. Umyeon (연행작용을 고려한 우면산 토석류 모의 매개변수 특성분석)

  • Lee, Seungjun;An, Hyunuk;Kim, Minseok;Lim, Hyuntaek
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.637-646
    • /
    • 2020
  • The shallow landslide-trigerred debris flow in hillslope catchments is the primary geological phenomenon that drives landscape changes and therefore imposes risks as a natural hazard. In particular, debris flows occurring in urban areas can result to substantial damages to properties and human injuries during the flow and sediment transport process. To alleviate the damages as a result of these debris flow, analytical models for flow and damage prediction are of significant importance. However, the analysis of debris flow model parameters is not yet sufficient, and the analysis of the entrainment, which has a significant influence on the flow process and the damage extent, is still incomplete. In this study, the effects of erosion and erosion process on the flow and the impact area due to the change in the soil parameters are analyzed using Deb2D model, a flow analysis model of debris developed in Korea. The research is conducted for the case of the Mt. Umyeon landslide in 2011. The resulting impacted area, total debris-flow volume, maximum velocity and inundated depth from the Erosion model are compared to the field survey data. Also, the effect of the entrainment changing parameters is analyzed through the erosion shape and depth. The debris flow simulation for the Raemian and Shindong apartment catchment with the consideration of entrainment effect and erosion has been successful. Each parameter sensitivity could be analyzed through sensitivity analysis for the two basins based on the change in parameters, which indicates the necessity of parameter estimation.

A Study for the Water Rising Effect on Flood Water Level by Debris (유송잡물에 의한 홍수위 상승 영향분석 - 삽교천의 선우대교를 중심으로 -)

  • Cho, Yong-Ho;Jeong, Sang-Man;Han, Kyu-Ha;Shin, Kwang-Seob
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.179-186
    • /
    • 2007
  • This paper has investigated a rise of water level in upstream and downstream of bridge, which is caused by accumulation of debris in a bridge. The debris has been classified into several types in terms of size. The rise of water level which has been caused by installation and removal of sheet pile that is used to block water in a bridge has been analyzed using HEC-RAS model. According to the analysis, it has turned out that the debris has no influence on the rise of water level in ordinary water flow. In addition, sheet pile has little impact on the rise of water as well. Even though the impact of sheet file has turned out trivial in flood flow just like the ordinary water flow, it's been simulated that the maximum water level difference between upstream and downstream of bridge turned out more than 1.0meter because of debris in 80-year or more flood frequency. When the rise of water level in upstream from the cross section of the bridge was investigated based on 100-year flood frequency, besides, it has turned out that it had an influence up to 17.84km distance because of the effect of debris.

Analysis of Landslide and Debris flow Hazard Area using Probabilistic Method in GIS-based (GIS 기반 확률론적 기법을 이용한 산사태 및 토석류 위험지역 분석)

  • Oh, Chae-Yeon;Jun, Kye-Won
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.172-177
    • /
    • 2012
  • In areas around Deoksan Li and Deokjeon Li, Inje Eup, Inje Gun, located between $38^{\circ}2^{\prime}55^{{\prime}{\prime}}N$ and $38^{\circ}5^{\prime}50^{{\prime}{\prime}}N$ in latitude and $128^{\circ}11^{\prime}20^{{\prime}{\prime}}E$ and $128^{\circ}18^{\prime}20^{{\prime}{\prime}}E$ in longitude, large-sized avalanche disasters occurred due to Typhoon Ewiniar in 2006. As a result, 29 people were dead or missing, along with a total of 37.25 billion won of financial loss(Gangwon Province, 2006). To evaluate such landslide and debris flow risk areas and their vulnerability, this study applied a technique called 'Weight of Evidence' based on GIS. Especially based on the overlay analysis of aerial images before the occurrence of landslides and debris flows in 2005 and after 2006, this study extracted 475 damage-occurrence areas in a shape of point, and established a DB by using such factors as topography, hydrologic, soil and forest physiognomy through GIS. For the prediction diagram of debris flow and landslide risk areas, this study calculated W+ and W-, the weighted values of each factor of Weight Evidence, while overlaying the weighted values of factors. Besides, the diagram showed about 76% in prediction accuracy, and it was also found to have a relatively high correlationship with the areas where such natural disasters actually occurred.

Landslide Hazard Evaluation using Geospatial Information based on UAV and Infinite Slope Stability Model (UAV 기반의 공간정보와 무한사면해석모형을 활용한 산사태 위험도 평가)

  • Lee, Geun-Sang;Choi, Yun-Woong
    • Journal of Cadastre & Land InformatiX
    • /
    • v.45 no.2
    • /
    • pp.161-173
    • /
    • 2015
  • The influence of climate change on rainfall patterns has triggered landslide and debris flow with casualties and property damage. This study constructed DSM and Orthophoto by using UAV surveying technique and evaluated landslide risk area by applying GIS data into the infinite slope stability model. As a result of the estimation of slope stability in a site, the slope instability has $SI{\leq}1.0$ with cover area 46,396m2, and the distribution percentage was 18.2%. The most dangerous section has $SI{\leq}0.0$ with its cover area 7,988m2, and the ratio was 0.8%. The reviews regarding the risk of landslide and debris flow risk by stability index and river channel analysis respectively help being able to designate the hazard zone due to heavy rainfall. Therefore the analysis result of this study will need to reinforce soil slope and plan their safety measures in the future.

Design of Road Drainage for Debris Flow (토석류 고려 도로배수시설 설계 방안)

  • Lee, Yong-Soo;Choi, Chang-Ho;Chung, Ha-Ikn;Koh, Jeung-Hyun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.521-524
    • /
    • 2008
  • In addition the typhoon 'Lusa' of year 2002 has resulted 5,400 billion won of property damage and the damages for roads and railroads were approximated to be 2,860 billion won at 12,377 locations holding 53% damage of total. It was reported that the property damage due to the 2003 typhoon, 'Maemi' was 4,200 billion won. The recent typhoon, 'Aewinia', caused the 1,400 billion-won property damage including sweeping and flooding of 127 roads and 65 rivers, respectively. Therefore, this paper presented to estimate drainage size for debris flow

  • PDF