• Title/Summary/Keyword: debris flow analysis

Search Result 195, Processing Time 0.038 seconds

Analysis of Topographical Change using Monitoring of damaged areas of Debris flow (토석류 피해지역 모니터링을 이용한 지형변화 분석)

  • Tak, Won Jun;Jun, Kye Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.227-227
    • /
    • 2020
  • 최근 국내에서는 이상기온으로 인한 국지성 폭우와 여름철 태풍과 집중호우로 인해 다양한 재해 유형 중 산악지역을 중심으로 산지재해의 피해가 증가하는 추세이다. 본 논문에서는 토석류 피해지역 중 토석류가 발생한 메인계류와 해당 하류지역을 대상으로 연간지형변화 및 침·퇴적분석에 대해 기술하였다. 대상지역은 2012년 루사로 인해 토석류 피해가 발생한 인제군(설악산 국립공원)지역으로 거주하는 인원이 없어 민가나 생활시설에 미치는 영향은 크지 않지만 하류지역에 교량 및 도로가 위치하고 있어 토석류가 재발생시 위험한 지역으로 분류할 수 있다. 이에 2012 ~ 2020년까지 LiDAR 촬영을 이용한 현장모니터링을 실시하고 있다. 모니터링 데이터를 종합하여 년도별 지형자료를 구축하였으며 인명피해 위험성이 적어 복구가 늦어지거나 계획이 없는 자연사면지역에서의 지형변화를 살펴보았다. 또한 토석류 계류지역과 하류부를 중심으로 침·퇴적 분석을 실시하였다. 계류지역에서는 횡 넓이, 유동심, 크게는 방향, 식생 등에 대한 변화를 분석하였으며 하류부에 위치한 교량 및 도로 등 구조물, 시설물들에 미치는 영향을 분석하였다.

  • PDF

Cyclone Type Filter for Preventing Clogging of High Pressure Coolant Pump (고압 쿨런트 펌프의 막힘 방지를 위한 사이클론 타입 필터)

  • Kim, Jun-Hwan;Kang, Ji-Hun;Kang, Seong-Gi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.599-604
    • /
    • 2015
  • Currently, the coolant system in industrial sites is an efficient process to keep clean cutting oils. However, the damage to a pump occurs due to a chip and debris when inhaled into the pump, and thus problems such as the reduction of both efficiency and lifespan might arise. In this study, a new type of filter was developed in order to primarily prevent the damage from the pump impeller and make it unnecessary to have the replacement and cleaning at the same time. This study found the problem reducing the suction volumetric efficiency and cavitation when inhaled, and conducted a method to solve the problem compared to the result of fluid analysis according to two velocity conditions. As a result, this study achieved the effect of lowering the pressure and meeting the suction flow rate by connecting the four filters.

Analysis of Flow Characteristics of Debris Flow in the Topography Considering Buildings (건물을 고려한 지형에서의 토석류 유동특성 분석)

  • Kang, Bae Dong;Jun, Kye won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.228-228
    • /
    • 2022
  • 최근 이상기후로 인해 단시간에 다량의 강우가 내리는 현상이 발생하고 있으며, 이는 급경사면의 지반을 포화시켜 붕괴에 이르게 하여 유수와 붕괴된 토사가 계곡을 따라 흐르는 토석류 재해로 이어진다. 토석류는 빠른 속도로 유하하여 인명과 주거 및 도로 등의 시설에 피해를 발생시킨다. 토석류를 해석하기 위한 연구방법에는 피해지역의 현장조사와 모형실험을 이용하는 방법, 수치모형을 이용하는 방법 등이 있다. 현장조사와 모형실험에는 고가의 장비와 많은 인력 및 비용이 소요되어 수치모형을 이용한 연구가 주로 이뤄지고 있으며, 피해지역의 건물, 도로 등의 시설물을 고려한 지형을 제작하여 토석류 수치모형에 적용한 연구도 진행되고 있다. 본 연구에서는 태풍 미탁의 영향으로 시간당 최대 110mm/hr, 누적강수량 487mm로 인해 토석류 재해가 발생한 강원도 삼척시 원덕읍을 연구대상지로 선정하였으며, 토석류 해석 시 침식과 퇴적작용을 고려할 수 있는 Hyper KANAKO 모형을 적용하였다. 토석류 수치모의 시 건물의 유무를 고려하여 지형자료를 구축하고 Hyper KANAKO 모형을 적용하였다. 건물이 미고려된 지형에서는 실제 토석류가 이동한 거리와 피해면적에 비해 과다하게 모의 되는 특징이 나타났으나, 건물이 고려된 지형에서는 실제 피해와 유사한 이동거리, 유동심 및 피해면적을 나타내었다. 이는 토석류 발생 위험지역에 대한 모의 시 건물을 고려함으로써 피해범위와 규모를 건물 미고려시 보다 정확하게 예측할 수 있어 토석류 저감계획 수립 및 피해지 분석시 활용성이 가능할 것으로 판단된다.

  • PDF

A study on the landslide detection method using wireless sensor network (WSN) and the establishment of threshold for issuing alarm (무선센서 네트워크를 이용한 산사태 감지방법 및 경로발령 관리 기준치 설정 연구)

  • Kim, Hyung-Woo;Kim, Goo-Soo;Chang, Sung-Bong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.262-267
    • /
    • 2008
  • Recently, landslides frequently occur on natural slope and/or man-made cut slope during periods of intense rainfall. With a rapidly increasing population on or near steep terrain, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide monitoring systems have been developed throughout the world. In this paper, a simple landslide detection system that enables people to escape the endangered area is introduced. The system is focused on the debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of wireless sensor nodes, gateway, and remote server system. Wireless sensor nodes and gateway are deployed by commercially available Microstrain G-Link products. Five wireless sensor nodes and one gateway are installed at the test slope for detecting ground movement. The acceleration and inclination data of test slope can be obtained, which provides a potential to detect landslide. In addition, thresholds to determine whether the test slope is stable or not are suggested by a series of numerical simulations, using geotechnical analysis software package. It is obtained that the alarm should be issued if the x-direction displacement of sensor node is greater than 20mili-meters and the inclination of sensor node is greater than 3 degrees. It is expected that the landslide detection method using wireless senor network can provide early warning where landslides are prone to occur.

  • PDF

Characteristics of Rainfall Thresholds for the Initiation of Landslides at Chuncheon Province (춘천시에서 발생한 산사태 유발강우의 특성 분석)

  • Sang Ug, Kim;Kyong Oh, Baek
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.148-157
    • /
    • 2022
  • Every year, particularly during the monsoon rainy season, landslides at the Chuncheon province of South Korea cause tremendous damage to lives, properties, and infrastructures. More so, the high rainfall intensity and long rainfall days that occurred in 2020 have increased the water content in the soil, thereby increasing the chances of landslide occurrences. Besides this, the rainfall thresholds and characteristics responsible for the initiation of landslides in this region have not been properly identified. Therefore, this paper addresses the rainfall thresholds responsible for the initiation of landslides at Chuncheon from a regional perspective. Using data obtained from rainfall measurements taken from 2002 to 2011, we identify a threshold relationship between rainfall intensity and rainfall duration for the initiation of landslides. In addition, we identify the relationship between the rainfall intensity using a 3-day, 7-day, and 10-day antecedent rainfall observation. Specifically, we estimate the rainfall data at 8 sites where debris flow occurred in 2011 by kriging. Following this, the estimated data are used to construct the relationship between the intensity (I), duration (D), and frequency (F) of rainfall. The results of the intensity-duration-frequency (IDF) analysis show that landslides will occur under a rainfall frequency below a 2-year return period at two areas in Chuncheon. These results will be effectively used to design structures that can prevent the occurrence of landslides in the future.

A Numerical Analysis of Porewater Pressure Predictions on Hillside Slopes (수치해석을 이용한 산사면에서의 간극수압 예측에 관한 연구)

  • 이인모;서정복
    • Geotechnical Engineering
    • /
    • v.10 no.1
    • /
    • pp.47-62
    • /
    • 1994
  • It has been well known that the rainfall-triggered rise of groundwater levels is one of the most important factors resulting the instability of the hillside slopes. Thus, the prediction of porewater pressure is an essential step in the evaluation of landslide hazard. This study involves the development and verification of numerical groundwater flow model for the prediction of groundwater flow fluctuations accounting for both of unsatu나toed flow and saturated flow on steep hillside slopes. The first part of this study is to develop a nomerical groundwater flow model. The numerical technique chosen for this study is the finitro element method in combination with the finite difference method. The finite element method is used to transform the space derivatives and the finite difference method is used to discretize the time domain. The second part of this study is to estimate the unknown model parameters used in the proposed numerical model. There were three parameters to be estimated from input -output record $K_e$, $\psi_e$, b. The Maximum -A-Posteriori(MAP) optimization method is utilized for this purpose, . The developed model is applied to a site in Korea where two debris avalanches of large scale and many landslides of small scale were occurred. The results of example analysis show that the numerical groundwater flow model has a capacity of predicting the fluctuation of groundwater levels due to rainfall reasonably well.

  • PDF

An Experimental Study on Mode ll Fracture Toughness Determination of Rock (암석의 전단 파괴인성 측정에 관한 실험적 연구)

  • 윤정석;전석원
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.64-75
    • /
    • 2003
  • This study presents a newly suggested test method of Mode II fracture toughness measurement called "Punch Through Shear Test" which was originally proposed by Backers and Stephansson in 2001. The purpose of this study is to check the validity of the suggested testing method by performing Mode II fracture toughness tests for Daejeon Granite. In addition, the optimal specimen geometry for the testing and the relation between Mode II fracture toughness and confining pressure were also investigated. Fractured surface was observed to be very smooth with lots of rock debris which came off fracture surface which obviously implies that the surface was sheared off. This confirms that Mode II fracturing actually occurred. In addition, numerical analyses including continuum analysis, particle flow code analysis and crack propagation simulations were performed. Results of these numerical analyses indicated that the cracks occurred in the specimen were predominantly in Mode II and these cracks led to failure of the test specimen. From this investigation, it can be concluded that the newly suggested "Punch Through Shear Test" method provides a reliable means of determining the Mode II fracture toughness. fracture toughness.

Optimizing Urban Construction and Demolition Waste Management System Based on 4D-GIS and Internet Plus

  • Wang, Huiyue;Zhang, Tingning;Duan, Huabo;Zheng, Lina;Wang, Xiaohua;Wang, Jiayuan
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.321-327
    • /
    • 2017
  • China is experiencing the urbanization at an unprecedented speed and scale in human history. The continuing growth of China's big cities, both in city land and population, has already led to great challenges in China's urban planning and construction activities, such as the continuous increase of construction and demolition (C&D) waste. Therefore, how to characterize cities' construction activities, particularly dynamically quantify the flows of building materials and construction debris, has become a pressing problem to alleviate the current shortage of resources and realize urban sustainable development. Accordingly, this study is designed to employ 4D-GIS (four dimensions-Geographic Information System) and Internet Plus to offer new approach for accurate but dynamic C&D waste management. The present study established a spatio-temporal pattern and material metabolism evolution model to characterize the geo-distribution of C&D waste by combing material flow analysis (MFA) and 4D-GIS. In addition, this study developed a mobile application (APP) for C&D waste trading and information management, which could be more effective for stakeholders to obtain useful information. Moreover, a cloud database was built in the APP to disclose the flows of C&D waste by the monitoring information from vehicles at regional level. To summarize, these findings could provide basic data and management methods for the supply and reverse supply of building materials. Meanwhile, the methodologies are practical to C&D waste management and beyond.

  • PDF

Analyzing the Occurrence Trend of Sediment-Related Disasters and Post-Disaster Recovery Cases in Mountain Regions in N orth Korea Based on a Literature Review and Satellite Image Observations (문헌 및 위성영상에 기초한 북한의 산지토사재해 발생경향 및 복구사례 분석)

  • Kim, Kidae;Kang, Minjeng;Kim, Suk Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.3
    • /
    • pp.419-430
    • /
    • 2021
  • This study investigated spatiotemporal trends of sediment-related disasters in North Korea from 1960 to 2019 and post-disaster recovery cases based on a literature review and satellite images. Results showed that occurrence status of sediment-related disasters was initially externally reported in 1995 (during the Kim Jongil era); their main triggering factor was heavy summer rainfall. Furthermore, forest degradation rate was positively correlated with population density (R2 = 0.4347, p = 0.02) and occurrence number of sediment-related disasters was relatively high on the west coast region, where both variables showed high values. This indicates that human activity was a major cause of forest degradation and thus, significantly affected sediment-related disasters in mountain regions. Finally, sediment- related disasters due to shallow landslides, debris flow, and slow-moving landslides were observed in undisturbed forest regions and human-impacted forest regions, including terraced fields, opencast mines, forest roads, and post-wildfire areas, via satellite image analysis. These disaster-hit areas remained mostly abandoned without any recovery works, whereas hillside erosion control work (e.g., treeplanting with terracing) or torrent erosion control work (e.g., check dam, debris flow guide bank) were implemented in certain areas. These findings can provide reference information to expand inter-Korean exchange and cooperation in forest rehabilitation and erosion control works of North Korea.

Topographical Analysis of Landslide in Mt. Woomyeon Using DSM (DSM 자료를 이용한 우면산 산사태 지형 분석)

  • Kim, Gihong;Choi, Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.60-66
    • /
    • 2020
  • Torrential rain causes landslide damage every year. In particular, the 2011 downpour caused landslides at numerous points throughout Mt. Woomyeon, which resulted in considerable damage to people and property. Because it occurred in an urban area, this case became a major social issue and received public attention. Measures were quickly implemented for multilateral investigations and recovery. Landslides caused by heavy rain are greatly affected by rainfall at the time. Landslides from the upper part erode the flow path, increasing the size, causing much damage to the lower part. This study selected a rural village area among the damaged areas of Mt. Woomyeon, and analyzed the change in terrain profile before and after a landslide using the DSM data obtained from airborne LiDAR. This area can be divided into three hydrological basins. For each basin, the analysis was performed on the average slope of each part of the flow path, as well as the erosion and deposition due to soil flow. As a result of the analysis, it was estimated that the total amount of soil from the Jeonwon village was 15,300㎥. These field data based on GIS can be used as basic information to predict damage in the case of a similar disaster, and it can be helpful in analyzing the results of various debris flow simulations.