• Title/Summary/Keyword: dead reckoning

Search Result 194, Processing Time 0.025 seconds

Design and Implementation of Dead Reckoning Algorithm for Network Game (네트워크 게임을 위한 데드 리커닝 알고리즘의 설계 및 구현)

  • Kim, Seong-Rak;Yun, Nam-Kyun;Koo, Yong-Wan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.8
    • /
    • pp.2452-2462
    • /
    • 2000
  • Network games can be regarded as a kind of group work to make target results through competition and cooperation. This paper summarizes the requirements for a group communication platform to support multi-user network games and describes the design and implementation principles of such a dead reckoning, This approach enhances the productivity of network game development by separating the development phase of a game from making it networked. Under the this paper, flexible enough to provide multimedia games networked by various forms of architectures.

  • PDF

Vehicle Simulator and it's Lateral Control by the Dead-Reckoning Positioning

  • Song, Hyo-Shin;Park, Ju-Yong;Eum, Sang-In;Ha, Seong-Ki;Bae, Jong-Il;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.101.5-101
    • /
    • 2002
  • A vehicle simulator is made here to simulate the lateral control of vehicles. Dead-reckoning sensors which consist of gyroscopes and accelerometers are utilized for the positioning of it. A significant side-slip occurs when the developed vehicle is drove autonomously. To cope with the side-slip, the vehicle is steered to follow the reference yaw rate which is generated by the relationship between the target point and the position of vehicle. The experimental results show the good performances of lane tracking and the passenger comfort.

  • PDF

Development of Tracking Application Based on Pedestrian Dead-Reckoning System (보행자 추측항법 시스템기반 위치추적 어플리케이션 구현)

  • Park, Ji-Won;Park, Tae-Oh;Jo, Chan-Woong;Lee, Chae-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.141-142
    • /
    • 2016
  • 본 논문은 보행자의 이동경로 추적을 위해 PDR(Pedestrian Dead Reckoning) 알고리즘을 탑재한 임베디드 모듈과 연결 가능한 안드로이드 어플리케이션을 구현하였다. 임베디드 모듈은 IMU센서를 통해 얻은 값을 통해 보행자의 위치를 구하고 어플리케이션에 전송한다. 어플리케이션은 임베디드 모듈로부터 위치 값을 받아 스마트폰 화면에 실시간으로 사용자의 위치를 디스플레이 한다. 어플리케이션을 구현하여 필드 테스트를 진행한 결과 보행자의 이동경로를 비교적 정확하게 추적하였다.

GPS and DR Navigation System for Unmanned 9round Vehicle (무인지상차량을 위한 GPS와 DR을 이용한 항법시스템)

  • 박대선;박정훈;지규인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.75-75
    • /
    • 2000
  • Recently, number of navigation system using GPS and other complementary sensors has been developed to offer high-position accuracy. In this paper, an integration of GPS and Dead-Reckoning, which consists of a fiber optical gyroscope and two high-precision wheel-motor encoders for a unmanned navigation system, is presented. The main objective of this integrated GPS/DR unmanned navigation system is to provide accurate position and heading navigation data continuously for autonomous mobile robot. We propose a method for increasing the accuracy of the estimated position of the mobile robot by its DR sensors, high-precision wheel-motor encoders and a fiber optical gyroscope. We used Kalman filter theory to combine GPS and DR measurements. The performance of GPS/DR navigation system is evaluated.

  • PDF

Internal-External Error Controller Design for Position Control of Vehicle (운반체의 위치제어를 위한 내부.외부오차 제어기 설계)

  • Chung, Yong-Oug;Park, Chong-Kug
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.12
    • /
    • pp.1213-1221
    • /
    • 2007
  • In most case of previous research about vehicle control system, external error occurred by unexpected environmental situation was hardly considered. However, in this paper, to have more accurate position control of differential derive vehicle, we separate the error as an internal error and external error. To calculate the vehicle position in real time, we introduced the Dead-Reckoning algorithms and the simulation result show that the proposed internal and external error control system has fast and accurate position tracking with remarkable diminishment of orientation error. The results reported here can easily be extended to the control of similar type vehicle.

A Performance Analysis of IMU Based Pedestrian Dead Reckoning System at Different Walking Speed (보행 속도에 따른 IMU기반 보행자 관성항법 시스템의 이동경로 추적 성능 결과 분석)

  • Jang, Yechan;Kwon, Young-Hun;Cho, Hyeon-Gyu;Lee, Chae-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.489-492
    • /
    • 2015
  • 사용자의 위치기반 서비스에 대한 수요가 증가함에 따라 보행자의 현재 이동경로와 위치를 나타내는 '보행자 항법 시스템(PDR, Pedestrian Dead Reckoning)'에 관한 많은 연구들이 진행 중이다. 보행자 관성 항법 시스템은 IMU를 통해 데이터를 수신하여 각속도와 가속도 값을 구하고, 이 값을 토대로 사용자의 속도와 위치를 추정 한다. 또한 Zero-velocity(영속도)검출을 통해 누적되는 오차를 보정한다. 지금까지 대부분의 보행자 관성항법 시스템의 성능평가는 보행속도가 느리고 제한적인 상황에서 수행되었다. 하지만 이러한 상황은 보행자의 실제 보행상태를 반영하지 못한다. 본 논문에서는 다양한 보행속도에 따른 관성 항법 시스템의 성능을 실험하고 결과를 분석한다.

Indoor Positioning Algorithm Combining Bluetooth Low Energy Plate with Pedestrian Dead Reckoning (BLE Beacon Plate 기법과 Pedestrian Dead Reckoning을 융합한 실내 측위 알고리즘)

  • Lee, Ji-Na;Kang, Hee-Yong;Shin, Yongtae;Kim, Jong-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.302-313
    • /
    • 2018
  • As the demand for indoor location recognition system has been rapidly increased in accordance with the increasing use of smart devices and the increasing use of augmented reality, indoor positioning systems(IPS) using BLE (Bluetooth Lower Energy) beacons and UWB (Ultra Wide Band) have been developed. In this paper, a positioning plate is generated by using trilateration technique based on BLE Beacon and using RSSI (Received Signal Strength Indicator). The resultant value is used to calculate the PDR-based coordinates using the positioning element of the Inertial Measurement Unit sensor, We propose a precise indoor positioning algorithm that combines RSSI and PDR technique. Based on the plate algorithm proposed in this paper, the experiment have done at large scale indoor sports arena and airport, and the results were successfully verified by 65% accuracy improvement with average 2.2m error.

Minimizing Position Error in a Car Navigation System by fusing GPS and Dead-Reckoning (Car Navigation System에서 GPS와 추측항법을 결합한 위치오차의 최소화에 관한 연구)

  • Lee, Hyuck-Joong;Lee, Chang-Ho;Kim, Kwang-Ik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.2 no.2 s.4
    • /
    • pp.81-88
    • /
    • 1994
  • The CNS(Car Navigation System) is used more generally in driver aid system than ALV(Auto nomous Land Vehicle) research area. In this paper we developed a new position tracking algorithm for the Global Path Planning in the CNS. In japan, CNS is already well developed and, thesedays they sell CNS products about $400{\sim}500$ thousands per year, and USA and European Communications(EC), too. In Korea, studies of the first generation CNS, which finds current location of a navigating vehicle and displays its location in a Digital-Map with real-time are progressing but still in the beginning step. Therefore a new position tracking algorithm is presented, which reduces vehicle position error dramatically by fusing GPS and dead-reckoning sensors. And the validity of our algorithm is demonstrated by the experimental results with the real car.

  • PDF

Performance Improvement of a Pedestrian Dead Reckoning System using a Low Cost IMU (저가형 관성센서를 이용한 보행자 관성항법 시스템의 성능 향상)

  • Kim, Yun-Ki;Park, Jae-Hyun;Kwak, Hwy-Kuen;Park, Sang-Hoon;Lee, ChoonWoo;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.569-575
    • /
    • 2013
  • This paper proposes a method for PDR (Pedestrian Dead-Reckoning) using a low cost IMU. Generally, GPS has been widely used for localization of pedestrians. However, GPS is disabled in the indoor environment such as in buildings. To solve this problem, this research suggests the PDR scheme with an IMU attached to the pedestrian's waist. However, despite the fact many methods have been proposed to estimate the pedestrian's position, but their results are not sufficient. One of the most important factors to improve performance is, a new calibration method that has been proposed to obtain the reliable sensor data. In addition to this calibration, the PDR method is also proposed to detect steps, where estimation schemes of step length, attitude, and heading angles are developed. Peak and zero crossings are detected to count the steps from 3-axis acceleration values. For the estimation of step length, a nonlinear step model is adopted to take advantage of using one parameter. Complementary filter and zero angular velocity are utilized to estimate the attitude of the IMU module and to minimize the heading angle drift. To verify the effectiveness of this scheme, a real-time system is implemented and demonstrated. Experimental results show an accuracy of below 1% and below 3% in distance and position errors, respectively, which can be achievable using a high cost IMU.

An Efficient Method to Update Character Moving Directions for Massively Multi-player Online FPS Games (대규모 온라인 FPS 게임을 위한 효율적인 캐릭터 방향 갱신 기법)

  • Lim, Jong-Min;Lee, Dong-Woo;Kim, Youngsik
    • Journal of Korea Game Society
    • /
    • v.14 no.5
    • /
    • pp.35-42
    • /
    • 2014
  • In the market of First Person Shooter (FPS) games, Massively Multi-player Online FPS games (MMOFPS) like 'PlanetSide 2' have been popular recently. Dead reckoning has been widely used in order to mitigate the network traffic overload for the game server with hundreds or thousands of people. This paper proposes the efficient analytical method to calculate the tolerable threshold angle of moving direction, which is one of the most important factors for character status updating when dead reckoning is used in MMOFPS games. The experimental results with game testers shows that the proposed method minimizes the position error for character moving and provides natural direction updates of characters.