• Title/Summary/Keyword: dead

Search Result 3,289, Processing Time 0.044 seconds

LQG/LTR Control of Hydraulic Positioning System with Dead-zone (사역대가 포함된 유압 위치 시스템의 LQG/LTR 제어)

  • Kim, In-Soo;Kim, Yeung-Shik;Kim, Ki-Bum
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.729-735
    • /
    • 2012
  • A LQG/LTR(linear quadratic Gaussian/loop transfer recovery) controller with an integrator is designed to control the electro-hydraulic positioning system. Without considering the nonlinearity in the dead-zone, computer simulations are performed and show good performances and tracking abilities with the feedback controller based on the linear system model. However, the performance of the closed loop hydraulic positioning system shows big steady-state error in real system because of the dead-zone. In this paper, the feedback controller with a nonlinear compensator is introduced to overcome the dead-zone phenomenon in hydraulic systems. The inverse dead-zone as a nonlinear compensator is used to cancel out the dead-zone phenomenon. Experimental tests are performed to verify the performance of the controller.

Dead Time Compensation Scheme Independent of Parameter Variations in an Inverter-fed PMSM Drive (파라미터 변화에 무관한 인버터 구동 PMSM의 데드타임 보상 기법)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.124-134
    • /
    • 2011
  • A new dead time compensation scheme that can exactly estimate the dead time and inverter nonlinearity under parameter variations is proposed for a PWM inverter-fed PMSM drive. The proposed scheme uses the fact that the sixth harmonic component in total disturbance estimated under the presence of various uncertainties is mainly caused by the dead time and inverter nonlinearity. The total disturbance due to the parameter variations as well as the dead time and inverter nonlinearity is estimated by the adaptive scheme. The sixth harmonic component is extracted from this total disturbance through harmonic analysis. The obtained sixth harmonic is processed by the PI controller to estimate the disturbance caused by the dead time and inverter nonlinearity in the stationary reference frame. The effectiveness of the proposed scheme is verified. Without requiring an additional hardware, the proposed scheme can effectively compensate the dead time and inverter nonlinearity even under the parameter variations.

LQG/LTR Control of Hydraulic Positioning System with Dead-zone (사역대가 포함된 유압 위치 시스템의 LQG/LTR 제어)

  • Kim, Ki-Bum;Kim, Yeung-Shik;Kim, In-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.614-619
    • /
    • 2012
  • A LQG/LTR(Linear Quadratic Gaussian/Loop Transfer Recovery) controller with an integrator is designed to control the electro-hydraulic positioning system. Without considering the nonlinearity in the dead-zone, computer simulations are performed and show good performances and tracking abilities with the feedback controller based on the linear system model. However, the performance of the closed loop hydraulic positioning system shows big steady-state error in real system because of the dead-zone. In this paper, the feedback controller with a nonlinear compensator is introduced to overcome the dead-zone phenomenon in hydraulic systems. The inverse dead-zone as a nonlinear compensator is used to cancel out the dead-zone phenomenon. Experimental tests are performed to verify the performance of the controller.

  • PDF

Density-surfactant-motivated removal of DNAPL trapped in dead-end fractures

  • 여인욱;이강근;지성훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.51-54
    • /
    • 2003
  • Three kinds of experiments were conducted to test existing methods and develop an effective methodology for the remediation of DNAPL trapped in vertical dead-end fractures. A water-flushing method failed to remove TCE from vertical dead-end fractures where no fluid flow occurs. A water-flushing experiment implies that existing remediation methods, utilizing water-based remedial fluid such as surfactant-enhanced method, have difficulty in removing DNAPL trapped from the vertical downward dead-end fractures, because of no water flow through dead-end fractures, capillary, and gravity forces. Fluid denser than TCE was injected into the fracture network, but did not displace TCE from the vertical dead-end fractures. Base(B on the analysis of the experiments, the increase in the density of the dense fluid and the addition of surfactant to the dense fluid were suggested, and this composite dense fluid with surfactant effectively removed TCE from the vertical dead-end fractures.

  • PDF

Analysis and Compensation Control of Dead-Time Effect on Space Vector PWM

  • Shi, Jie;Li, Shihua
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.431-442
    • /
    • 2015
  • Dead-time element must be set into space vector pulsed width modulation signals to avoid short circuits of the inverter. However, the dead-time element distorts the output voltage vector, which deteriorates the performance of electrical machine drive system. In this paper, dead-time effect and its compensation control strategy are analyzed. Based on the analysis, the voltage distortion caused by dead-time is regarded as two disturbances imposed on dq axes in the rotor reference frame, which degenerates the current tracking performance. To inhibit the adverse effect caused by the dead-time, a control scheme using two linear extended state observers is proposed. This method provides a strong ability to suppress dead-time effects. Simulations and experiments are conducted on a permanent magnet synchronous motor drive system to demonstrate the effectiveness of the proposed method.

New Approach Using the Continued Fraction Expansion for the Dead Time Approximation (Continued Fraction Expansion을 이용한 Dead Time 근사의 새로운 접근)

  • Cho, Won-Hui;Lee, Jie-Tae
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.830-836
    • /
    • 2012
  • Dead times appear often in describing process dynamics and raise some difficulties in simulating process dynamics or analyzing process control systems. To relieve these difficulties, it is needed to approximate the infinite dimensional dead time by the finite dimensional transfer function and, for this, the Pade approximation method is often used. For the accurate approximation of the dead time, high order Pade approximation is needed and the high order Pade approximation is not easy to memorize and is not stable numerically. We propose a method based on the continued fraction expansion that provides the same transfer functions. The method is excellent numerically as well as systematic to be memorized easily. It can be used conveniently for the process control lecture and computations.

Measurement of Cell Death Constant in Anabaena flos-aquae (Cyanophyceae) by the Molecular Probe (Anabaena flos-aquae 에서의 세포사멸계수(Cell Death Constant)의 측정)

  • 오인혜
    • The Korean Journal of Ecology
    • /
    • v.20 no.3
    • /
    • pp.169-173
    • /
    • 1997
  • The measurement of cell death constant in Anabaena flos-aquae was tested by the Live/Dead BacLight Viability kit(Molecular Probes Co., Seatle, WA). When the Live/Dead BacLight Viability kit was applied to Anabaena flos-aquae, the cells with intact cell membranes(live cells) stained fluorescent green, while the cell with damaged membranes(dead cells) stained fluorescent red and the background remained virtually nonfluorescent. The rations of live : dead cells in the cell suspension were controlled artifically and Live/Dead BacLight Viability kit was applied to them. The ratios of green:red fluorescent cells in the cell suspension were the same as those of live : dead cells controlled artifically. It was also approved by the fluorescence emission. The cell death constant was measured in the P-limited Anabaena flos-aquae chemostal culture in the N-fixing and $KNO_3-supplied$ conditions. The culture in N-fixing chemostat had a dead cell proportion of 1.2% at the growth rate of 0.7/day and increased to 2.6% at the growth rate of 0.3/day. The cell death constant of N-fixing culture was 0.008/day.There was a same trend in the $KNO_3-supplied$ chemostat culture. The proportion of dead cell was 1.6% of dead cell proportion at the growth rate of 0.7/day and increased to 4.3% at the growth rate of 0.3/day.

  • PDF

Online Dead Time Effect Compensation Algorithm of PWM Inverter for Motor Drive Using PR Controller

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1137-1145
    • /
    • 2017
  • This paper proposes the dead time effect compensation algorithm using proportional resonant controller in pulse width modulation inverter of motor drive. To avoid a short circuit in the dc link, the dead time of the switch device is surely required. However, the dead time effect causes the phase current distortions, torque pulsations, and degradations of control performance. To solve these problems, the output current including ripple components on the synchronous reference frame and stationary reference frame are analyzed in detail. As a results, the distorted synchronous d-and q-axis currents contain the 6th, 12th, and the higher harmonic components due to the influence of dead time effect. In this paper, a new dead time effect compensation algorithm using proportional resonant controller is also proposed to reduce the output current harmonics due to the dead time and nonlinear characteristics of the switching devices. The proposed compensation algorithm does not require any additional hardware and the offline experimental measurements. The experimental results are presented to demonstrate the effectiveness of the proposed dead time effect compensation algorithm.

A Study on the Space Vector PWM Inverter without Dead Time (데드 타임 없는 공간 벡터 전압 변조 인버터에 관한 연구)

  • Seo Il-Soo;Song Eui-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • In a voltage source inverter, the dead time is necessary to prevent short circuits in the dc link. The dead time effect appears as a distortion of output voltages and currents. In recent years, the dead time compensation methods have been investigated in many literatures. This paper presents not the dead time compensation by sensing and calculation but the dead time elimination. The proposed inverter system doesn't need to sense load current and to calculate dead time. Adding some transformers to each leg, dead times in the inverter system are eliminated automatically. The proposed method is analyzed on each mode and verified through simulation results.

Construction of a robust dead beat control system considered a transient response

  • Yoshida, Satoru;Kamiya, Yuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.106-109
    • /
    • 1995
  • First, in this paper we propose a new dead best control system design technique by which we can specify a transient response before the settling time. Though the resultant system has the same system configuration as Reference[1], that is realized by adapting the performance index which includes the term of the square of difference between specified and pracitical responses. Next, we state a technique which gives the dead beat control system robustness and construct a robust dead beat control system. Simulations of the proposed dead beat control and robust dead beat control systems show expected results.

  • PDF