• Title/Summary/Keyword: deactivated

Search Result 134, Processing Time 0.02 seconds

Therapeutic Potentiality of Celtis choseniana Nakai on Androgenic Alopecia through Repression of Androgen Action and Modulation of Wnt/β-catenin Signaling

  • Hui-Ju Lee;Geum-Lan Hong;Kyung-Hyun Kim;Yae-Ji Kim;Tae-Won Kim;Ju-Young Jung
    • Natural Product Sciences
    • /
    • v.29 no.1
    • /
    • pp.31-37
    • /
    • 2023
  • In this study, we investigated the efficacy of Celtis choseniana Nakai (C. choseniana) as complementary herbal medicine to ameliorate androgenic alopecia (AGA). The effects of C. choseniana on AGA were evaluated using testosterone propionate-induced AGA mouse model and dihydrotestosterone-treated human hair follicle dermal papilla cells. In vivo, C. choseniana treatment deactivated androgen signaling by reducing the concentration of serum dihydrotestosterone level and expressions of 5α-reductase 2 and androgen receptor. Next, C. choseniana treatment increased the hair regrowth rate. Histological studies demonstrated that C. choseniana induced the anagen phase in testosterone propionate-induced AGA mouse model. Cellular proliferation was promoted by C. choseniana treatment via increasing the expression of proliferation factors, such as proliferating cell nuclear antigen and cyclin D1. Furthermore, C. choseniana treatment increased the expression of proteins related to the Wnt/β-catenin signaling pathway. In addition, dickkopf-1, a Wnt inhibitor, was downregulated with C. choseniana treatment. Likewise, C. choseniana treatment promoted cellular proliferation in vitro. This study demonstrated the inhibitory effect of C. choseniana on androgen-induced AGA. Moreover, C. choseniana induced activation of Wnt/β-catenin signaling, resulting in prolonged anagen and cellular proliferation. Therefore, we suggest that C. choseniana can be used as a therapeutic agent to alleviate AGA.

Characterization of Repeated Deactivation and Subsequent Re-activation of Photocatalyst Used in Two Alternatively-operating UV/photocatalytic Reactors of Waste-air Treating System (교대로 운전되는 두 개의 UV/광촉매반응기로 구성된 폐가스 처리시스템에서의 광촉매의 비활성화 및 재생 특성)

  • Lee, Eun Ju;Chung, Chan Hong;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.584-595
    • /
    • 2021
  • In this study, the correlation between operating stages of waste air-treating system composed of two alternatively-operating UV/photocatalytic reactors, and the deactivation of photocatalyst used in each operating stage, was investigated by instrumental analysis thereon. The repeated deactivation and subsequent re-generation of photocatalyst used in the waste air treating system of previous investigation performed by Lee and Lim (Korean Chem. Eng. Research, 59(4), 574-583(2021)), were characterized on virgin photocatalyst-carrying porous SiO2 media (A4), used photocatalyst-carrying porous SiO2 media (A1, A2 and A3) collected from the corresponding photocatalytic reactor upon 1st, 2nd, and 3rd run, respectively, regenerated photocatalyst-carrying porous SiO2 media upon 1 time-run (AD1) and 3 times regenerated photocatalyst-carrying porous SiO2 media upon 3 time-runs (AD3) by instrumental analysis including BET analysis, SEM, XPS, SEM-EDS and FT-IR. As a result, the proper regeneration-temperature for deactivated photocatalyst to be regenerated several times (more than 3 times), was suggested below 200 ℃. Such temperature of deactivated photocatalyst-regeneration was almost consistent to the one, according to BET analysis, at which tiny nano-pores blocked by adsorbed ethanol-oxidative and degraded intermediates (AEODI), were regenerated to be reopened through almost complete mineralization of AEODI. In particular, the results of XPS analysis indicated an incurrence of insignificant deactivation of photocatalysis upon 1st run of UV/photocatalytic reactor (A or C) of the previous investigation. In addition, the results of XPS analysis were consistent with the experimental results of the previous investigation in that 1) deactivation of photocatalyst incurred during 2nd run of the UV/photocatalytic reactor (A or C) resulted in decreased removal efficiency, by ca. 5% and 5%, of ethanol and hydrogen sulfide, respectively, compared with its 1st run; 2) there was insignificant difference between the removal efficiencies of its 2nd run and 3rd run. Furthermore, the removal efficiencies of ethanol and hydrogen sulfide for hypothetical 4th run of photocatalytic reactor in the previous investigation, using AD3, were expected to decrease, compared with its 3rd run, by much more than those for 2nd run in the previous investigation did, compared with its 1st run.

A Study on Reactions of Palladium Anode Catalyst in Direct Formic Acid Fuel Cells (개미산 연료전지에서 연료극 팔라듐 촉매의 반응에 대한 연구)

  • Han, Jong-Hee;Kim, Jin-Soo;Yoon, Sung-Pil;Nam, Suk-Woo;Lim, Tae-Hoon;Kwon, Yong-Chai
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.697-701
    • /
    • 2010
  • We investigate the cell performance and characteristics of a direct formic acid fuel cell (DFAFC) using palladium (Pd) as a catalyst for anode. Pd is deposited on the electrolyte using the "direct paint" method. From a continuous three time-test of the polarization curve of the DFAFC, it is found that the catalytic activity of Pd and the cell performance of DFAFC steadily degrade as the tests are proceeded. This behavior may be due to the deactivation of Pd by formate (COOH) and hydroxyl (OH) groups, which are electrochemically dissociated from formic acid solution. Estimations of the degradation, followed by reactivation in activity of Pd catalyst and DFAFC cell performance are implemented by linear voltage sweep tests going in both positive and negative directions. When the maximum voltage of 1.0 V versus DHE is applied to the cell while a linear voltage sweep test going in negative directions, the activity of Pd catalyst and the DFAFC cell performance recover by the rehabilitation in activity of the deactivated Pd.

Dihydroxy-acid Dehydratase Involved in the Biosynthesis of the Branched-Chain Amino acids, Isoleucine and Valine, from the archaeon Sulfolobus solfataricus

  • Kim, Seong-Hun;Lee, Sun-Bok
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.327-333
    • /
    • 2005
  • Dihydroxy-acid dehydratase (DHAD, 2,3-dihydroxy-acid hydrolyase, EC 4.2.1.9) is one of the key enzymes involved in the biosynthetic pathway of the branched chain amino acid isoleucine and valine. Although the enzyme have been purified and characterized in various mesophiles including bacteria and eukarya, the biochemical properties of DHAD has bee not yet reported from hyperthermophilic archaea. In this study, we cloned, expressed, and purified a DHAD homologue from the thermoacidophilic archaeon Sulfolobus solfataricus P2, which grows optimally at $80\;^{\circ}C$ and pH 3, in E. coli. Characterization of the recombinant S. solfataricus DHAD (rSso_DHAD) revealed that it is the dimeric protein with a subunit molecular weight of 64,000 Da in native structure. rDHAD showed the highest activity toward 2,3-dihydroxyisovaleric acid among 17 aldonic acid substrates Interestingly, this enzyme also displayed 50 % activities toward some pentonic acids and hexonic acids when compared with the activity of this enzyme to the natural substrate. Moreover, rSso_DHAD indicated relatively higher activity toward D-gluconate than any other hexonic acids tested in substrates. $K_m$ and $V_{max}$ values of rSso_DHAD were calculated as $0.54\;{\pm}\;0.04\;mM$ toward 2,3dihydroxyisovalerate and $2.42\;{\pm}\;0.19\;mM$ toward D-gluconate, and as $21.6\;{\pm}\;0.4\;U/mg$ toward 2,3-dihydroxyisovalerate and $13.8\;{\pm}\;0.4\;U/mg$ toward D-gluconate, respectively. In the study for biochemical properties, the enzyme shows maximal activity between $70^{\circ}C$ and $80^{\circ}C$, and the pH range of pH 7.5 to 8.5. The half life time at $80^{\circ}C$ was 30 min. A divalent metal ion, $Mn^{2+}$, was only powerful activators, whereas other metal ions made the enzyme activity reduced. $Hg^{2+}$, organic mercury, and EDTA also strongly inhibited enzyme activities. Particularly, the rSso_DHAD activity was very stable under aerobic condition although the counterparts reported from mesophiles had been deactivated by oxygen.

  • PDF

Effects of Co/Al and Si/Al Molar Ratios on DTO (Dimethyl Ether to Olefins) Reaction over CoAPSO-34 Catalyst (CoAPSO-34 촉매상에서 DTO (Dimethyl Ether to Olefins) 반응에 미치는 Co/Al 및 Si/Al 몰 비의 영향)

  • Kim, Hyo-Sub;Lee, Su-Gyung;Choi, Ki-Hwan;Lee, Dong-Hee;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.138-144
    • /
    • 2015
  • Effects of Co/Al and Si/Al molar ratios of cobalt incorporated SAPO-34 catalysts (CoAPSO-34) on their catalytic lifetime were investigated in dimethyl to olefin (DTO) reaction. The property of CoAPSO-34 catalysts was characterized using XRD, SEM, $^{29}Si$ MAS NMR, and $NH_3$-TPD techniques. First, the lifetime of CoAPSO-34 prepared by varying Co/Al molar ratios was improved than that of using the SAPO-34 catalyst, and the optimal Co/Al molar ratio was 0.0025. The total acid site amounts increased from 0.432 to 1.111 mmol/g with increasing Si/Al molar ratios from 0.05 to 0.20 while fixing a Co/Al molar ratio of 0.0025. However, the catalysts with too high acid site amounts were deactivated rapidly with blockages of the pores due to the fast accumulation of polycyclic aromatic hydrocarbons in the cage. Therefore, the CoAPSO-34 catalyst with a proper Si/Al molar ratio of 0.10 was the most superior in terms of the lifetime, which was improved by about 87% as compared with that of the SAPO-34 catalyst.

Electroencephalography Activities Influenced by Classroom Smells of Male High School (남자고등학교 교실냄새에 대한 뇌파반응)

  • Ryu, Hyun;Ko, WooHyong;Kim, JongWoo;Kim, SooRin;Kim, Min Kyung
    • Science of Emotion and Sensibility
    • /
    • v.16 no.3
    • /
    • pp.387-396
    • /
    • 2013
  • In this study, the influence of classroom smells (foot odor, hair smell, sour smell, and sweat smell) of male high school and sweat smell and the offensive odor substance (ammonia and butyric acid) on the electroencephalography (EEG) activities of 20 female volunteers, ranging in age from 30 to 50 were studied. The representative response of brainwave index by these smells stimuli was most pronounced on temporal lobes among the brain lobes. By comparison with background EEG activities on temporal lobes, the smells reduced the relative alpha band power (0.04~0.13) and increased the relative beta band power (0.02~0.06) and the relative gamma band power (0.03~0.09). The alpha wave was deactivated, high beta (18~30Hz) and gamma (30~50Hz) waves were remarkably activated. The order of EEG fluctuation caused by the smell stimulus is as follows; hair smell > butyric acid > foot odor, sour smell > ammonia > sweat smell. It means that the classroom smells cause an excessive brain arousal and straining and may be reducing one's attention and learning ability.

  • PDF

Autonomic Nervous System response affected by 3D visual fatigue evoked during watching 3D TV (3D TV 시청으로 유발된 시각피로가 자율신경계 기능에 미치는 영향)

  • Park, Sang-In;Whang, Min-Cheol;Kim, Jong-Wha;Mun, Sung-Chul;Ahn, Sang-Min
    • Science of Emotion and Sensibility
    • /
    • v.14 no.4
    • /
    • pp.653-662
    • /
    • 2011
  • As technology in 3D industry has rapidly advanced, a lot of studies primarily focusing on visual function and cognition have become vigorous. However, studies on effect of 3D visual fatigue on autonomic nervous system have not less been conducted. Thus, this study was to identify and determine the effect that might have a negative influence on sympathetic nervous system, parasympathetic nervous system, and cardiovascular system. Fifteen undergraduates (female: 9, mean age: $22.53{\pm}2.55$) participated and were sat on a comfortable chair, viewing a 3D content during about 1 hour. Cardiac responses like SDNN(standard deviation of RR intervals), RMS-SD(root mean squared successive difference), and HF/LF ratios extracted from the measured PPG(Photo-PlethysmoGram) before viewing 3D were compared to those after viewing 3D. The results showed that after subjects watched the 3D, responses in sympathetic nervous system and parasympathetic nervous system were activated and deactivated, respectively relative to those before watching the 3D. The results showed that HF/LF ratio, Ln(LF), and Ln(HF) after viewing 3D were significantly reduced relative to those before viewing 3D. No significant effects were observed in SDNN and RMS-SD. Results obtained in this study showed that visual fatigue induced by watching 3D adversely influenced autonomic nervous system, and thereby reduced heart rate variability causing sympathetic nervous acceleration.

  • PDF

A Study on the Possibility of Using of Spent RHDS Catalyst as a SCR Catalyst wash-coated on the metal corrugated substrate (폐 RHDS 촉매재생 후 메탈 코로게이트 지지체상에서 워시코팅에 의한 NOx 저감 SCR 촉매에 관한 연구)

  • Na, Woo-jin;Cha, Eunji;Kang, Dae-hwan;Go, Young-ju;Cho, Ye-ji;Choi, Eun-young;Park, Hea-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.723-732
    • /
    • 2020
  • The spent RHDS (Residue HydroDeSulfurization) catalyst is deactivated mainly by deposition of various contaminants such as coke, sulfur and vanadium on the surface of catalyst. To eliminate those contaminants, the following remanufacturing process was conducted. The first, heavy oil on the surface of the spent RHDS catalyst was removed by kerosene and dehydrated. The second, the high temperature incineration was carried out to eliminate coke and sulfur components deposited on the surface of spent RHDS catalyst. The third, the excessive quantity of Vanadium deposited on the surface of catalyst was removed by leaching process as follows: ultrasonic agitation was carried out at 50℃, for 10 seconds with 0.5% and 1% oxalic acid solution. The purpose of this process is to find out regenerated RHDS catalyst can be used as SCR catalyst for NOx reduction by controlling the vanadium residual content of the regenerated RHDS catalyst through leaching process. The composition of regenerated RHDS catalyst was analyzed by XRF and the NOx reduction efficiency was also measured by continuous catalytic fixed bed reactor. As the result, regenerated catalyst, with 0.5% oxalic acid, ultrasonic agitation in 10 seconds, showed the most stable NOx reduction efficiency. Also, in comparison with commercial SCR catalyst, the NOx reduction performance of regenerated catalyst was similar to that of commercial SCR catalyst at the temperature 375℃ and higher whereas was lower than commercial SCR catalyst at the temperature range between 200~250℃. Therefore, it was confirmed that the regenerated catalyst as powder form wash coated on the surface of metal corrugated substrate can be used for commercial SCR catalyst.

Evaluation of Catalyst Deactivation and Regeneration Associated with Photocatalysis of Malodorous Sulfurized-Organic Compounds (악취유발 황화유기화합물질의 광촉매분해에 따른 촉매 비활성화와 재생 평가)

  • Jo, Wan-Kuen;Shin, Myeong-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.965-974
    • /
    • 2009
  • This study evaluated the degradation efficiency of malodorous sulfurized-organic compounds by utilizing N- and Sdoped titanium dioxide under visible-light irradiation, and examined the catalyst deactivation and regeneration. Catalyst surface was characterized by employing Fourier-Transform-Infrared-Red (FTIR) spectra. The visible-light-driven photocatalysis techniques were able to efficiently degrade low-level dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) with degradation efficiencies exceeding 97%, whereas they were not effective regarding the removal of high-level DMS and DMDS, with degradation efficiencies of 84 and 23% within 5 hrs of photocatalytic processes. As compared with DMS, DMDS which containes one more sulfur element revealed quick catalyst deactivation. Catalyst deactivation was confirmed by the equality between input and output concentrations of DMD or DMDS, the obsevation of no $CO_2$ generation during a photocatalytic process, and the FTIR spectrum peaks related with sulfur ion compounds, which are major byproducts formed on catalyst surfaces. The mineralization efficiency of DMS at 8 ppm, which was a peak value during a photocatalytic process, was calculated as 144%, exceeding 100%. The catalyst regenerated by high-temperature calcination exhibited higher catalyst recovery efficiency (53 and 58% for DMDS and DMS, respectively) as compared with dry-air and humid-air regeneration processes. However, even the calcined method was unable to totally regenerate deactivated catalysts.

Oxygen Sensitivity of Carbon Monoxide-Dependent Hydrogen Production Activity in Citrobacter sp.

  • Kim, Jung-Rae;Oh, You-Kwan;Yoon, Yeo-Joon;Lee, Eun-Yeol;Park, Sung-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.717-724
    • /
    • 2003
  • A newly isolated Citrobacter sp. Y19 catalyzes the CO-dependent $H_2$ production (biological water-gas shift reaction) by the actions of CO dehydrogenase (CODH) and hydrogenase. Y 19 requires $O_2$ for fast growth, but its $H_2$ production activity is significantly inhibited by $O_2$. In the present study, the effect of $O_2$ on the activities of CODH ard hydrogenase was investigated quantitatively in both whole cells and broken cells, based on CO-dependent or methyl viologen (MV)-dependent $H_2$ production in addition to CO-dependent MV reduction. In crude cell extracts, CODH activity was mostly found in the soluble fraction. Inactivation of CODH and hydrogenase activities by $O_2$ followed the first-order decay kinetics, and the dependence of the rate constants on $O_2$ partial pressure could be expressed by the Michaelis-Menten equation. In whole cells, the maximum deactivation rate constants ($k_{d,max}$ of hydrogenase and CODH were quite similar: $0.07{\pm}0.03 min^{-1}\;and\;0.10{\pm}0.04 min^{-1}$, respectively. However, the first-order rate constant ($k_{d,max}/K_s$) of CODH ($0.25\;min^{-1}\;atm^{-1}$) at low $O_2$ partial pressures was about 3-fold higher than that of the hydrogenase, since the half-saturation constant ($K_s$) of CODH was about half of that of hydrogenase. In broken cells, both enzymes became significantly more sensitive to $O_2$ compared to the unbroken cells, while $k_{d,max}/K_s$ increased 37-fold for hydrogenase and 6.7-fold for CODH. When whole cells were incubated under anaerobic conditions after being exposed to air for 1 h, hydrogenase activity was recovered more than 90% in 2 h suggesting that the deactivation of hydrogenase by $O_2$ was reversible. On the contrary, CODH activity was not recovered once deactivated by $O_2$ and the only way to recover the activity was to synthesize new CODH. This study indicates that $O_2$ sensitivity of $H_2$ production activity of Citrobacter sp. Y19 is an important drawback as in other $H_2-producing$ bactria.