Browse > Article
http://dx.doi.org/10.14478/ace.2014.1128

Effects of Co/Al and Si/Al Molar Ratios on DTO (Dimethyl Ether to Olefins) Reaction over CoAPSO-34 Catalyst  

Kim, Hyo-Sub (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
Lee, Su-Gyung (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
Choi, Ki-Hwan (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
Lee, Dong-Hee (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
Park, Chu-Sik (Hydrogen and fuel cell department, Korea Institute of Energy Research)
Kim, Young-Ho (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.26, no.2, 2015 , pp. 138-144 More about this Journal
Abstract
Effects of Co/Al and Si/Al molar ratios of cobalt incorporated SAPO-34 catalysts (CoAPSO-34) on their catalytic lifetime were investigated in dimethyl to olefin (DTO) reaction. The property of CoAPSO-34 catalysts was characterized using XRD, SEM, $^{29}Si$ MAS NMR, and $NH_3$-TPD techniques. First, the lifetime of CoAPSO-34 prepared by varying Co/Al molar ratios was improved than that of using the SAPO-34 catalyst, and the optimal Co/Al molar ratio was 0.0025. The total acid site amounts increased from 0.432 to 1.111 mmol/g with increasing Si/Al molar ratios from 0.05 to 0.20 while fixing a Co/Al molar ratio of 0.0025. However, the catalysts with too high acid site amounts were deactivated rapidly with blockages of the pores due to the fast accumulation of polycyclic aromatic hydrocarbons in the cage. Therefore, the CoAPSO-34 catalyst with a proper Si/Al molar ratio of 0.10 was the most superior in terms of the lifetime, which was improved by about 87% as compared with that of the SAPO-34 catalyst.
Keywords
Dimethyl ether; DTO reaction; SAPO-34; CoAPSO-34;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 B. M. Lok, C. A. Messina, R. L. Patton, R. T. Gajek, T. R. Cannan, and E. M. Flanigen, Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids, J. Am. Chem. Soc., 106, 6092-6093 (1984).   DOI
2 G. Sastre, D. W. Lewis, and C. R. A. Catlow, Modeling of silicon substitution in SAPO-5 and SAPO-34 molecular sieves, J. Phys. Chem. B, 101, 5249-5262 (1997).   DOI   ScienceOn
3 M. J. van Niekerk, J. C. Q. Fletcher, and C. T. O'Connor, Effect of catalyst modification on the conversion of methanol to light olefins over SAPO-34, Appl. Catal. Gen., 138, 135-145 (1996).   DOI   ScienceOn
4 X. Wu and R. G. Anthony, Effect of feed composition on methanol conversion to light olefins over SAPO-34, Appl. Catal. Gen., 218, 241-250 (2001).   DOI   ScienceOn
5 G. Seo and B. G. Min, Mechanism of methanol conversion over zeolite and molecular sieve catalysts, Korean Chem. Eng. Res., 44, 329-339 (2006).
6 K. Y. Lee, H. J. Chae, S. Y. Jeong, and G. Seo, Effect of crystallite size of SAPO-34 catalysts on their induction period and deactivation in methanol-to-olefin reactions, Appl. Catal. Gen., 369, 60-66 (2009).   DOI   ScienceOn
7 P. Wang, A. Lv, J. Hu, J. Xu, and G. Lu, The synthesis of SAPO-34 with mixed template and its catalytic performance for methanol to olefins reaction, Microp. Mesop. Mater., 152, 178-184 (2012).   DOI   ScienceOn
8 M. Kim, H. J. Chae, T. W. Kim, K. E. Jeong, C. U. Kim, and S. Y. Jeong, Attrition resistance and catalytic performance of spray-dried SAPO-34 catalyst for MTO process: Effect of catalyst phase and acidic solution, J. Ind. Eng. Chem., 17, 621-627 (2011).   DOI   ScienceOn
9 B. M. Weckhuysen, R. R. Rao, J. A. Martens, and R. A. Schoonheydt, Transition Metal Ions in Microporous Crystalline Aluminophosphates: Isomorphous Substitution, Eur. J. Inorg. Chem., 1999, 565-577 (1999).
10 M. Kang, Synthesis and catalytic performance on methanol conversion of NiAPSO-34 crystals (II): catalytic performance under various reaction conditions, J. Mol. Catal. Chem., 150, 205-212 (1999).   DOI   ScienceOn
11 M. Karthik, A. Vinu, A. K. Tripathi, N. M. Gupta, M. Palanichamy, and V. Murugesan, Synthesis, characterization and catalytic performance of Mg and Co substituted mesoporous aluminophosphates, Microp. Mesop. Mater., 70, 15-25 (2004).   DOI   ScienceOn
12 Y. Wei, Y. He, D. Zhang, L. Xu, S. Meng, Z. Liu, and B. L. Su, Study of Mn incorporation into SAPO framework: Synthesis, characterization and catalysis in chloromethane conversion to light olefins, Microp. Mesop. Mater., 90, 188-197 (2006).   DOI   ScienceOn
13 D. Zhang, Y. Wei, L. Xu, F. Chang, Z. Liu, S. Meng, B. L. Su, and Z. Liu, MgAPSO-34 molecular sieves with various Mg stoichiometries: Synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins, Microp. Mesop. Mater., 116, 684-692 (2008).   DOI   ScienceOn
14 Y. Wei, D. Zhang, L. Xu, F. Chang, Y. He, S. Meng, B. L. Su, and Z. Liu, Synthesis, characterization and catalytic performance of metal-incorporated SAPO-34 for chloromethane transformation to light olefins, Catal. Today, 131, 262-269 (2008).   DOI   ScienceOn
15 H. S. Kim, S. G. Lee, Y. H. Kim, D. H. Lee, J. B. Lee, and C. S. Park, Improvement of lifetime using transition metal-incorporated SAPO-34 catalysts in conversion of dimethyl ether to light olefins, J. Nanomater., 2013, 1-9 (2013).
16 S. G. Lee, H. S. Kim, Y. H. Kim, E. J. Kang, D. H. Lee, and C. S. Park, Dimethyl ether conversion to light olefins over the SAPO-34/ZrO2 composite catalysts with high life time, J. Ind. Eng. Chem., 20, 61-67 (2014).   DOI   ScienceOn
17 E. J. Kang, D. H. Lee, H. S. Kim, K. H. Choi, C. S. Park, and Y. H. Kim, Conversion of DME to light olefins over mesoporous SAPO-34 catalyst prepared by carbon nanotube template, Appl. Chem. Eng., 25, 34-40 (2014).   DOI   ScienceOn
18 Y. H. Song, H. J. Chae, K. E. Jeong, C. U. Kim, C. H. Shin, and S. Y. Jeong, The effect of crystal size of SAPO-34 synthesized using various structure directing agents for MTO reaction, J. Korean Ind. Eng. Chem., 19, 559-567 (2008).
19 S. Li, J. L. Falconer, and R. D. Noble, SAPO-34 membranes for $CO_2/CH_4$ separation, J. Membr. Sci., 241, 121-135 (2004).   DOI   ScienceOn
20 M. A. Carreon, S. Li, J. L. Falconer, and R. D. Noble, SAPO-34 seeds and membranes prepared using multiple structure directing agents, Adv. Mater., 20, 729-732 (2008).   DOI   ScienceOn
21 A. M. Prakash and S. Unnikrishnan, Synthesis of SAPO-34: high silicon incorporation in the presence of morpholine as template, J. Chem. Soc., Faraday Trans., 90, 2291-2296 (1994).   DOI
22 J. W. Park, S. J. Kim, M. Seo, S. Y. Kim, Y. Sugi, and G. Seo, Product selectivity and catalytic deactivation of MOR zeolites with different acid site densities in methanol-to-olefin (MTO) reactions, Appl. Catal. Gen., 349, 76-85 (2008).   DOI   ScienceOn
23 S. Ashtekar, S. V. V. Chilukuri, and D. K. Chakrabarty, Small-pore molecular sieves SAPO-34 and SAPO-44 with chabazite structure: a study of silicon incorporation, J. Phys. Chem., 98, 4878-4883 (1994).   DOI   ScienceOn
24 J. F. Haw and D. M. Marcus, Well-defined (supra)molecular structures in zeolite methanol-to-olefin catalysis, Topics Catal., 34, 41-48 (2005).   DOI
25 J. Tan, Z. Liu, X. Bao, X. Liu, X. Han, C. He, and R. Zhai, Crystallization and Si incorporation mechanisms of SAPO-34, Microp. Mesop. Mater., 53, 97-108 (2002).   DOI   ScienceOn