• Title/Summary/Keyword: de-icing pavement system

Search Result 4, Processing Time 0.015 seconds

Fundamental Study for Development of an Anti-Icing Pavement System Using Carbon-Fiber Sheet (탄소섬유 쉬트를 활용한 도로 결빙방지 시스템 개발을 위한 기초연구)

  • Lim, Chisu;Park, Kwangpil;Lee, Jaejun;Lee, Byungsuk
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.59-65
    • /
    • 2016
  • PURPOSES : This paper aims to develop a road pavement de-icing system using carbon sheet to replace the older snow de-icing method. Carbon sheet is a light and high-strength metal. Hence, various bodies of research for its applications in many industries have progressed. METHODS : The experiment was conducted in a laboratory. The carbon sheet supplied voltage through a power supply system, and produced heat transfers to the concrete surface. Various factors, such as pavement material, carbon sheet width, penetration depth, and freezing-thawing resistance, were considered in the conducted experiments to confirm the heating transfer efficiency of the carbon sheet. RESULTS : The carbon sheet used was a conductor. Therefore, it produced heat if voltage was supplied. The exposed carbon sheet on the atmosphere did not affect the carbon sheet width when it provided constant voltage. However, the sheet showed different heating behaviors by width change when the carbon sheet penetrated into the concrete. Moreover, the freezing-thawing resistance was decreased by the carbon sheet with increasing width. CONCLUSIONS : The experiments confirmed the possibility of developing a road snow melting system using a carbon sheet. The antiicing system using the carbon sheet to replace the traditional anti-icing system has disadvantages of environmental pollution risk and electric leakage. The pavement also improved its toughness resistance. The utilization value will be very high in the future if carbon sheet heat loss can be minimized and durability is improved.

Theoretical Study on Snow Melting Process on Porous Pavement System by using Heat and Mass Transfer (열전달 및 물질전달을 이용한 공극 발열도로에서의 융설 해석에 대한 이론적 연구)

  • Yun, Taeyoung
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.1-10
    • /
    • 2015
  • PURPOSES : A finite difference model considering snow melting process on porous asphalt pavement was derived on the basis of heat transfer and mass transfer theories. The derived model can be applied to predict the region where black-ice develops, as well as to predict temperature profile of pavement systems where a de-icing system is installed. In addition, the model can be used to determined the minimum energy required to melt the ice formed on the pavement. METHODS : The snow on the porous asphalt pavement, whose porosity must be considered in thermal analysis, is divided into several layers such as dry snow layer, saturated snow layer, water+pavement surface, pavement surface, and sublayer. The mass balance and heat balance equations are derived to describe conductive, convective, radiative, and latent transfer of heat and mass in each layer. The finite differential method is used to implement the derived equations, boundary conditions, and the testing method to determine the thermal properties are suggested for each layer. RESULTS: The finite differential equations that describe the icing and deicing on pavements are derived, and we have presented them in our work. The framework to develop a temperature-forecasting model is successfully created. CONCLUSIONS : We conclude by successfully creating framework for the finite difference model based on the heat and mass transfer theories. To complete implementation, laboratory tests required to be performed.

Frost resistance of porous concrete assuming actual environment (實環境を考慮したポーラスコンクリートの耐凍害性の評価(실제 환경을 고려한 다공질 콘크리트의 내동해성(耐凍害性) 평가))

  • NAKAMURA, Takuro;HORIGUCHI, Takashi;SHIMURA, Kazunori;SUGAWARA, Takashi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.227-233
    • /
    • 2008
  • Porous concrete has large continuous voids of 20-30 % by volume, and this concrete is attractive as environmental material in Japan i.e. permeable road pavement, river bank protection with vegetation and green roof system which influence thermal environment. It is necessary to confirm the frost resistance when constructing porous concrete structure in cold region. However applicable test method and evaluation criterion of porous concrete has not defined yet. Therefore, the object of this study is to investigate the frost resistance of porous concrete and this investigation attempts to address this concern by comparing 4 kinds of specified freezing and thawing tests methods (JIS A1148 procedure A/B and RILEM CIF/CDF test) in consideration of actual environment. RILEM freeze-thaw tests are different from JIS A1148 freeze-thaw tests, which are widely adopted for evaluating the frost resistance of conventional concrete in Japan, in water absorption, cooling rate, length of freezing and thawing period, and number of freezing and thawing cycles. RILEM CIF test measures internal damage and is primarily applicable for pure frost attack. CDF test is appropriate for freeze-thaw and de-icing salt attack. JIS A1148 procedure A/B showed extremely low frost resistance of porous concrete if the large continuous voids were filled with water and the ice expansion in the large continuous voids set in during cooling. Frost resistance of porous concrete was improved by mixing coarse aggregate (G7) which particle size is smaller and fine aggregate in JIS freezing and thawing tests. RILEM CIF/CDF test showed that freeze-thaw and de-icing resistance of porous concrete was seems to be superior in that of conventional concrete.

  • PDF

Worries and Reality Regarding Porous Asphalt Pavements: Structural Integrity, Flood Mitigation and Non-Point Pollution Reduction (투수성 아스팔트 포장에 대한 우려와 실제: 구조적 적합성, 홍수 완화 그리고 비점오염 저감)

  • Yoo, Inkyoon;Lee, Suhyung;Han, Daeseok;Lee, Sanghyuk
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.272-278
    • /
    • 2016
  • Porous pavements are recommended as a Low-Impact Development (LID) method which is a strategy to develop a water cycle as close to a natural state as possible, and to solve the urban impervious surface problems. Porous pavements can yield a solution if it provides a more permeable surface with extra space to contain extra water from building roofs. But there are few applications in Korea because of a lack of recognition and experience. Highway engineers are mainly concerned about the infiltration of water into pavement structures. They worry about the weakening of the asphalt mixture and subgrade, and freezing during the winter season due to the infiltration of water. Meanwhile, hydrological experts doubt the effects of the amount of water to control during the flooding season, and environmental experts prefer a non-point pollution treatment system established beside highway. In this study, from reviewing the history and the body of literature about porous pavements, conclusions regarding the most advanced technologies were made. First, traditional thickness designs can be used for porous pavement, no extra distresses was found by weakening and freezing during the winter season. Second, hydrological design can be made by controlling the thickness of the pavement and the outlet of water. Third, the treatment efficiency of non-point pollution of porous pavements is not worse than any other method. Importantly, it's a more eco-friendly solution because of its lower requirement for de-icing agents.