• Title/Summary/Keyword: de novo synthesis

Search Result 105, Processing Time 0.028 seconds

Enhancement of Endotoxin-Induced Prostaglandin Synthesis by Elevation of Glucose Concentration in Primary Cultured Rat Vascular Smooth Muscle Cells (일차 배양 혈관 평활근 세포에서 포도당 농도에 의한 엔도톡신 유도 프로스타글란딘 합성 변화)

  • Lee, Soo-Hwan;Woo, Hyun-Goo;Kim, Ji-Young;Baik, Eun-Joo;Moon, Chang-Hyun
    • YAKHAK HOEJI
    • /
    • v.41 no.6
    • /
    • pp.782-788
    • /
    • 1997
  • This study was designed to characterize glucose-enhancing effects on endotoxin-induced prostaglandin production in primary cultured rat vascular smooth muscle cells (VSMC). High glucose treatment significantly augmented prostaglandin (PG) synthesis in lipopolysaccharide (LPS)-stimulated VSMC and this effect was maximal at the concentration of 4mg/ml. It has been reported that increases in glucose metabolism through sorbitol pathway could alter the cytosolic $NADH/NAD^+$ ratio and this change favors de novo synthesis of diacylglycerol (DAG) and, in turn. Results in the activation of protein kinase C (PKC) in vascular tissues. Protein kinase C (PKC) inhibitors, staurosporin and H7, blocked the glucose enhancing effect, and DAG, a PKC activator, significantly increased the PG production stimuated by LPS. Sodium pyruvate, which can reverse the alteration in cytosolic NADH/NAD+ ratio, reduced the high glucose effect on PG production. And also, zopolrestat, a strong aldose reductase inhibitor, almost completely blocked the augmentation effect of glucose on PG synthesis. Arachidonic acid release was significantly increased in high glucose treated group, which implied the increase in $PLA_2$ activity was associated with glucose enhancing effect. Metabloic, labeling study clearly showed that de novo synthesis of prostaglandin H synthase-2 (PGHS-2) is greatly increased in high glucose treated group and this was mitigated by the treatment of zopolrestat. Taken together, the activation of PKC through sorbitol pathway increased the activities of $PLA_2$ and PGHS which resulted in the augmentation in LPS-induced PG production in high glucose treated VSMC.

  • PDF

Effects of Adenosine, Guanosine and Azaserine on Maturation of Mouse Oocytes In Vitro (생쥐 미성숙난자의 체외성숙에 미치는 Adenosine, Guanosine 및 Azaserine의 영향)

  • 전용필;김정훈;목정은;김문규
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.2
    • /
    • pp.123-130
    • /
    • 1997
  • Normal maturation of the mammalian oocytes is prerequisite for the fertilization and the early embryonic development. We have been tested the effects of purine and its de novo synthetic inhibitor, azaserine(Aza) on the maturation of germinal vesicle(GV) and germinal vesicle breakdown(GVBD) mouse oocytes. Denude-immature oocytes were cultivated in the media containing adenosine, guanosine, and/or azaserine, and checked the matruation stage by monitoring the prominent morphological changes. In GV stage oocytes, GV was arrested temporarily by the adenosine(1.0%) and protractedly by the guanosine(65.9%, P<0.001). The regression was increased significantly at the adenosine(90%, P<0.001) but decreased at the guanosine(1.6%, P<0.05). Inhibiting the de novo synthesis of purine, nuclear maturation rate was increase(90.4% : 96.7%), but GV arrest was significantly increased by cotreatment with guanosine(P<0.001). Polar body extraction significantly was increased at the Aza(P<0.05), but not in others. In GVBD oocytes, adenosine itself did not affect GVBD arrest. Guanosine, on the other hand, elevated GVBD arrest rate(P<0.001), but co-treated with Aza, decreased GVBD arrest(P<0.001). Aza increased GVBD arrest rate(20.2%, P<0.05) compared with control. From those results, we know that guanosine shows more prominent effect on the inhibition of nuclear maturation at the GV stage, and of the 1st polar body extrusion at the GVBD stage. Adenosine showed the cytoplasmic toxicity at GV stage oocyte. Our data speculate that cytoplasmic cAMP level is auto-regulated by endogenous adenylate cyclase while GVBD is inhibited by guanosine, since purine toxicity is not observed in the GVBD stage. And it is showed that purine metabolism is concerned with nuclear maturation, that the amounts of purine metabolism is not even during the oocyte maturation.

  • PDF

Draft Genome of Toxocara canis, a Pathogen Responsible for Visceral Larva Migrans

  • Kong, Jinhwa;Won, Jungim;Yoon, Jeehee;Lee, UnJoo;Kim, Jong-Il;Huh, Sun
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.6
    • /
    • pp.751-758
    • /
    • 2016
  • This study aimed at constructing a draft genome of the adult female worm Toxocara canis using next-generation sequencing (NGS) and de novo assembly, as well as to find new genes after annotation using functional genomics tools. Using an NGS machine, we produced DNA read data of T. canis. The de novo assembly of the read data was performed using SOAPdenovo. RNA read data were assembled using Trinity. Structural annotation, homology search, functional annotation, classification of protein domains, and KEGG pathway analysis were carried out. Besides them, recently developed tools such as MAKER, PASA, Evidence Modeler, and Blast2GO were used. The scaffold DNA was obtained, the N50 was 108,950 bp, and the overall length was 341,776,187 bp. The N50 of the transcriptome was 940 bp, and its length was 53,046,952 bp. The GC content of the entire genome was 39.3%. The total number of genes was 20,178, and the total number of protein sequences was 22,358. Of the 22,358 protein sequences, 4,992 were newly observed in T. canis. Following proteins previously unknown were found: E3 ubiquitin-protein ligase cbl-b and antigen T-cell receptor, zeta chain for T-cell and B-cell regulation; endoprotease bli-4 for cuticle metabolism; mucin 12Ea and polymorphic mucin variant C6/1/40r2.1 for mucin production; tropomodulin-family protein and ryanodine receptor calcium release channels for muscle movement. We were able to find new hypothetical polypeptides sequences unique to T. canis, and the findings of this study are capable of serving as a basis for extending our biological understanding of T. canis.

Downregulation of Hepatic De Novo Lipogenesis and Adipogenesis in Adipocytes by Pinus densiflora Bark Extract

  • Ahn, Hyemyoung;Jeong, Jeongho;Moyo, Knowledge Mudhibadi;Ryu, Yungsun;Min, Bokkee;Yun, Seong Ho;Kim, Hwa Yeon;Kim, Wooki;Go, Gwang-woong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1925-1931
    • /
    • 2017
  • Korean red pine (Pinus densiflora) bark extract, PineXol (PX), was investigated for its potential antioxidant and anti-inflammation effects in vitro. It was hypothesized that PX treatment ($25-150{\mu}g/ml$) would reduce the lipid synthesis in HepG2 hepatocytes as well as lipid accumulation in 3T3-L1 adipocytes. Hepatocytes' intracellular triglycerides and cholesterol were decreased in the PX $150{\mu}g/ml$ treatment group compared with the control (p < 0.05). Consequently, de novo lipogenic proteins (acetyl-CoA carboxylase 1, stearoyl-CoA desaturase 1, elongase of very long chain fatty acids 6, glycerol-3-phosphate acyltransferase 1, and sterol regulatory element-binding protein 1) were significantly decreased in hepatocytes by PX $150{\mu}g/ml$ treatment compared with the control (p < 0.05). In differentiated 3T3-L1 adipocytes, the lipid accumulation was significantly attenuated by all PX treatments (p < 0.01). Regulators of adipogenesis, including CCAAT-enhancer-binding proteins alpha, peroxisome proliferatoractivated receptor gamma, and perilipin, were decreased in PX $100{\mu}g/ml$ treatment compared with the control (p < 0.05). In conclusion, PX might have anti-obesity effects by blocking hepatic lipogenesis and by inhibiting adipogenesis in adipocytes.

Lipid Metabolism and Fatty Liver in Poultry (닭의 지방대사와 지방간)

  • Moon, Yang Soo
    • Korean Journal of Poultry Science
    • /
    • v.45 no.2
    • /
    • pp.109-118
    • /
    • 2018
  • A great progress in genetic selection, nutrition and management practices has contributed to the improved growth rate of broilers and egg production in laying hens. For the increased productivity of modern poultry, a healthy chicken liver needs to cope with the increased metabolic demands. The liver is the major site of de novo fatty acid synthesis; therefore, hepatic lipogenesis is crucial for producing better quality meat and eggs. When de novo lipogenesis exceeds the capacity of lipid metabolism and secretion, large amounts of lipids accumulate in the liver of broilers, leading to a fatty liver. Upon onset of egg-laying in hens, lipids including free fatty acids, triglycerides, and phospholipids are dramatically increased in blood plasma for the synthesis of yolk precursors in oocytes. Productive hens with fatty liver often have hemorrhagic syndrome and sudden death due to the heavy demands of yolk synthesis, which burdens the liver. Understanding the lipid metabolism and hepatic lipid disorders is a key point in the improvement of the growth and production of chickens. This review focuses on the recent studies on lipid metabolism, the hepatic lipid disorders, and the prevention or reduction of fatty liver in poultry.

Fermentation and Metabolic Pathway Optimization to De Novo Synthesize (2S)-Naringenin in Escherichia coli

  • Zhou, Shenghu;Hao, Tingting;Zhou, Jingwen
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1574-1582
    • /
    • 2020
  • Flavonoids have diverse biological functions in human health. All flavonoids contain a common 2-phenyl chromone structure (C6-C3-C6) as a scaffold. Hence, in using such a scaffold, plenty of high-value-added flavonoids can be synthesized by chemical or biological catalyzation approaches. (2S)-Naringenin is one of the most commonly used flavonoid scaffolds. However, biosynthesizing (2S)-naringenin has been restricted not only by low production but also by the expensive precursors and inducers that are used. Herein, we established an induction-free system to de novo biosynthesize (2S)-naringenin in Escherichia coli. The tyrosine synthesis pathway was enhanced by overexpressing feedback inhibition-resistant genes (aroGfbr and tyrAfbr) and knocking out a repressor gene (tyrR). After optimizing the fermentation medium and conditions, we found that glycerol, glucose, fatty acids, potassium acetate, temperature, and initial pH are important for producing (2S)-naringenin. Using the optimum fermentation medium and conditions, our best strain, Nar-17LM1, could produce 588 mg/l (2S)-naringenin from glucose in a 5-L bioreactor, the highest titer reported to date in E. coli.

Improving Mycoplasma ovipneumoniae culture medium by a comparative transcriptome method

  • Wang, Xiaohui;Zhang, Wenguang;Hao, Yongqing
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.30.1-30.11
    • /
    • 2020
  • Mycoplasma ovipneumoniae (Mo) is difficult to culture, resulting in many difficulties in related research and application. Since nucleotide metabolism is a basic metabolism affects growth, this study conducted a "point-to-point" comparison of the corresponding growth phases between the Mo NM151 strain and the Mycoplasma mycoides subsp. capri (Mmc) PG3 strain. The results showed that the largest difference in nucleotide metabolism was found in the stationary phase. Nucleotide synthesis in PG3 was mostly de novo, while nucleotide synthesis in NM151 was primarily based on salvage synthesis. Compared with PG3, the missing reactions of NM151 referred to the synthesis of deoxythymine monophosphate. We proposed and validated a culture medium with added serine to fill this gap and prolong the stationary phase of NM151. This solved the problem of the fast death of Mo, which is significant for related research and application.

Synthesis of 1,2,3-and 1,2,4-Triazole Isonucleosides as Potential antiviral agents

  • Jeong, Soon-Yong;Kim, Myong-Jung;Chun, Moon-Won
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.181.2-181.2
    • /
    • 2003
  • Inosine monophosphate dehydrogenase(IMPDH) catalyzes the $NAD^+$-dependent oxidation of IMP to XMP, the rate limiting step in the de novo biosynthesis of guanine nucleotide. Its critical role at the metabolic branch point in purine nucleotide biosynthesis makes it a useful target in the development of drugs for antiviral and anticancer chemotherapy and in immunosupressant area. Several compound with antiviral activity have been found to be inhibitors of IMPDH. For example, ribavirin, a competitive inhibitor of IMPDH, has broad spectrum antiviral activities against DNA and RNA viruses. (omitted)

  • PDF

Improved Viability and Proteome Analysis of Lactobacillus fermentum KLB12 upon Heat Stress (Lactobacillus fermentum KLB12의 열 전처리에 따른 열 스트레스 내성 증진 및 프로테옴 변화)

  • 김주현;박미영;김승철;윤현식;소재성
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.294-300
    • /
    • 2003
  • In the previous study, we have isolated several vaginal lactobacilli from Korean woman and selected one of them (KLB12) for further study, which was indentified as Lactobacillus fermentum by sequence analysis of 16S rRNA gene. Formulated L. fermentum KLB12 can be used for ecological treatment of bacterial vaginosis. For pharmaceutical formulation, the spray-drying process is required where stress such as high temperature is routinely applied. In this study, we found that heat stress at 60$^{\circ}C$ for 20∼30min reduced the viable cell population of KLB12 by 10$\sub$6/~10$\sub$9/. However, adaptation of KLB12 cells at 52$^{\circ}C$ made them more thermotolerant upon exposure to 60$^{\circ}C$. The level of thermal protection in RSM (reconstituted skim milk) by adaptation in acid (pH 5), cold (4$^{\circ}C$), ethanol (3%), NaCI (0.3M) was also examined. Although not as efficient as the homologous stress, adaptations in both cold and NaCI gave considerable cross protection against heat stress. When chloramphenicol was added during heat adaptation, adaptation effect was abolished. This suggests that de novo protein synthesis is necessary during the adaptation process. Important changes in proteome during heat adaptation was examined with two-dimensional gel electrophoresis.

Molecular Regulation of Pyrimidine Nucleotide Synthesis in Bacterial Genomes

  • Ghim, Sa-Youl
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.165-168
    • /
    • 2001
  • Regulation of pyrimidine nucleotide synthesis has been studied extensively in enteric bacteria and Bacillus species. Varieties of control modes have been proposed for regulation of pyrimidine nucleotide biosynthetic (pyr) genes. In Bacillus caldolyticus and B. subtilis, it has been proved that pyrimidine de novo biosynthetic operon is controlled by a regulatory protein PyrR-mediated attenuation. Another Gram-positive bacteria including Enterococcus faecalis, Lactobacillus plantarum, and wctococcus lactis have been found to constitute a pyr gene cluster containing the pyrR gene. In addition, it has been proposed that the structure of the 5' leader region of the Gram-negative extreme thermophile Thermus strain Z05 pyr operon provides a novel mechanism of PyrR-dependent coupled transcription-translation attenuation. Bacterial genome sequencing projects have identified the PyrR homologues in Haemophilus influenzae, Synechocystis sp., Mycobacterium tuberculosis, Streptococcus pneumoniae, S. pyogenes, and Clostridium acetobutylicum, which are currently investigating for their physiological functions.

  • PDF