• Title/Summary/Keyword: de novo

Search Result 409, Processing Time 0.023 seconds

Molecular epidemiology of Aleutian mink disease virus causing outbreaks in mink farms from Southwestern Europe: a retrospective study from 2012 to 2019

  • Prieto, Alberto;Fernandez-Antonio, Ricardo;Lopez-Lorenzo, Gonzalo;Diaz-Cao, Jose Manuel;Lopez-Novo, Cynthia;Remesar, Susana;Panadero, Rosario;Diaz, Pablo;Morrondo, Patrocinio;Diez-Banos, Pablo;Fernandez, Gonzalo
    • Journal of Veterinary Science
    • /
    • v.21 no.4
    • /
    • pp.65.1-65.13
    • /
    • 2020
  • Background: Aleutian mink disease virus (AMDV) causes major economic losses in fur-bearing animal production. The control of most AMDV outbreaks is complex due to the difficulties of establishing the source of infection based only on the available on-farm epidemiological data. In this sense, phylogenetic analysis of the strains present in a farm may help elucidate the origin of the infection and improve the control and biosecurity measures. Objectives: This study had the following aims: characterize the AMDV strains from most outbreaks produced at Spanish farms between 2012-2019 at the molecular level, and assess the utility of the combined use of molecular and epidemiological data to track the possible routes of infection. Methods: Thirty-seven strains from 17 farms were partially sequenced for the NS1 and VP2 genes and analyzed phylogenetically with other strains described worldwide. Results: Spanish AMDV strains are clustered in four major clades that generally show a good geographical correlation, confirming that most had been established in Spain a long time ago. The combined study of phylogenetic results and epidemiological information of each farm suggests that most of the AMDV outbreaks since 2012 had been produced by within-farm reservoirs, while a few of them may have been due to the introduction of the virus through international trade. Conclusions: The combination of phylogenetic inference, together with epidemiological data, helps assess the possible origin of AMDV infections in mink farms and improving the control and prevention of this disease.

De novo Assembly and Analysis of Amur Sturgeon (Acipenser schrenckii) Transcriptome in Response to Mycobacterium Marinum Infection to Identify Putative Genes Involved in Immunity

  • Zhang, Qianqian;Wang, Xiehao;Zhang, Defeng;Long, Meng;Wu, Zhenbing;Feng, Yuqing;Hao, Jingwen;Wang, Shuyi;Liao, Qian;Li, Aihua
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1324-1334
    • /
    • 2019
  • Fish mycobacteriosis is a common bacterial disease in many species of freshwater and marine fish and has caused severe loss of fish production. Mycobacterium marinum has been the most prevalent pathogen observed in several outbreaks of mycobacteriosis of farmed sturgeons in China. However, the immune responses and pathology of sturgeons in mycobacterial infection are rarely studied. Therefore, we used the Illumina RNA-seq method to analyze the transcriptome profile of Acipenser schrenckii challenged with Mycobacterium marinum. To begin, 168,220 non-redundant contigs were acquired from the infection and control groups, and among these, 33,225 contigs have acquired annotations. A total of 4,043 differently expressed (DE) contigs between the two groups were identified, and among these, 2479 were up-regulated and 1564 were down-regulated in the infected fish. A total of 1,340 DE contigs with acquired annotations in KEGG were enriched for 124 pathways including the TNF signaling pathway, and the Toll-like receptor signaling pathway. The roles of DE genes involved in significant pathways and other processes were discussed. The 2,209 DE contigs that have yet to acquire proper annotation may represent candidate genes associated with infection in sturgeons and are expected to serve as immunogenetic resources for further study. To our best knowledge, this is the first transcriptome study on sturgeons under bacterial infection.

Inhibition of DNA Methylation Is Involved in Transdifferentiation of Myoblasts into Smooth Muscle Cells

  • Lee, Won Jun;Kim, Hye Jin
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.441-444
    • /
    • 2007
  • Despite the importance of cell fate decisions regulated by epigenetic programming, no experimental model has been available to study transdifferentiation from myoblasts to smooth muscle cells. In the present study, we show that myoblast cells can be induced to transdifferentiate into smooth muscle cells by modulating their epigenetic programming. The DNA methylation inhibitor, zubularine, induced the morphological transformation of C2C12 myoblasts into smooth muscle cells accompanied by de novo synthesis of smooth muscle markers such as smooth muscle ${\alpha}$-actin and transgelin. Furthermore, an increase of p21 and decrease of cyclinD1 mRNA were observed following zebularine treatment, pointing to inhibition of cell cycle progression. This system may provide a useful model for studying the early stages of smooth muscle cell differentiation.

Post-transcriptional Regulation of NK Cell Activation

  • Kim, Tae-Don;Park, Ju-Yeong;Choi, In-Pyo
    • IMMUNE NETWORK
    • /
    • v.9 no.4
    • /
    • pp.115-121
    • /
    • 2009
  • Natural killer (NK) cells play key roles in innate and adaptive immune defenses. NK cell responses are mediated by two major mechanisms: the direct cytolysis of target cells, and immune regulation by production of various cytokines. Many previous reports show that the complex NK cell activation process requires de novo gene expression regulated at both transcriptional and post-transcriptional levels. Specialized un-translated regions (UTR) of mRNAs are the main mechanisms of post-transcriptional regulation. Analysis of posttranscriptional regulation is needed to clearly understand NK cell biology and, furthermore, harness the power of NK cells for therapeutic aims. This review summarizes the current understanding of mRNA metabolism during NK cell activation, focusing primarily on post-transcriptional regulation.

Synthesis and Some Properties of 4'-Phenyl-5'-Norcarbocyclic Adenosine Phosphonic Acid Analogues

  • Liu, Lian Jin;Kim, Eun-Ae;Hong, Joon-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1662-1668
    • /
    • 2011
  • Steric and electronic parameters of 4'-substituents play significant roles in steering the conformation of nucleoside analogues. In order to investigate the relationship of 4'-substituent with antiviral enhancement, novel 4'-phenyl-5'-norcarbocyclic adenosine phosphonic acid analogues were racemically synthesized via de novo acyclic stereoselective route from propionaldehyde 5. The phenyl substituted cyclopentenols 15a and 15b as key intermediates were successfully constructed via reiterative carbonyl addition of Grignard reagents and ring-closing metathesis of corresponding divinyl 14. The synthesized nucleoside phosphonic acids analogues 19, 20, 21, and 23 were subjected to antiviral screening against HIV-1.

Improved Cell Viability of Lactobacillus crispatus KLB46 by Stress Adaptation (Lactobacillus crispatus KLB46의 스트레스 전처리시 열 내성 증진효과)

  • Kwak, Dae-Yung;Kang, Chang-Ho;Jeon, HanEul;So, Jae-Seong
    • KSBB Journal
    • /
    • v.29 no.2
    • /
    • pp.81-86
    • /
    • 2014
  • Lactobacilli, the dominant species of microorganisms in the vaginal flora of healthy women, play important roles to prevent bacterial vaginosis and other sexually transmitted diseases. In this study, we carried out studies on stress adaptation prior to various stress treatment. We found that heat or salt adapted KLB46 showed higher cell viability than non adapted upon heat stress at $60^{\circ}C$ for 20 min. When chloramphenicol was added during the adaptation process, heat tolerance was abolished. This result suggested that de novo protein synthesis was essential during adaptation.

A Concentration-Function Basis for Ideal Vitamin C Intake

  • Kwon, Oran;Levine, Mark
    • Nutritional Sciences
    • /
    • v.5 no.4
    • /
    • pp.211-220
    • /
    • 2002
  • Vitamin C is an essential nutrient involved in many functions. Humans are unable to synthesize vitamin C de novo, because they lack the last enzyme in the biosynthetic pathway. Previous Recommended Dietary Allowances (RDAs) for vitamin C were based on prevention of deficiency with a margin of safety. However preventing deficiency may not be equivalent to ideal nutrient intake. Recommendation should be based on vitamin function in relation to concentration. For this goal, data set of the relationship between wide-range of vitamin C dose and resulting concentrations in plasma and tissues and characterization of functional outcomes in relation to these concentrations should be acquired. This article reviews the current knowledge in these areas and suggest how this knowledge may contribute toward establishing dietary guideline for ideal vitamin C intake.

Repositioned Drugs for Inflammatory Diseases such as Sepsis, Asthma, and Atopic Dermatitis

  • Prakash, Annamneedi Venkata;Park, Jun Woo;Seong, Ju-Won;Kang, Tae Jin
    • Biomolecules & Therapeutics
    • /
    • v.28 no.3
    • /
    • pp.222-229
    • /
    • 2020
  • The process of drug discovery and drug development consumes billions of dollars to bring a new drug to the market. Drug development is time consuming and sometimes, the failure rates are high. Thus, the pharmaceutical industry is looking for a better option for new drug discovery. Drug repositioning is a good alternative technology that has demonstrated many advantages over de novo drug development, the most important one being shorter drug development timelines. In the last two decades, drug repositioning has made tremendous impact on drug development technologies. In this review, we focus on the recent advances in drug repositioning technologies and discuss the repositioned drugs used for inflammatory diseases such as sepsis, asthma, and atopic dermatitis.

Purine Derivatives Excreted in Urine as an Indicator Estimating Microbial Yield from the Rumen: A - Review

  • Kanjanapruthipong, J.;Len, R.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.3
    • /
    • pp.209-216
    • /
    • 1998
  • The paper presented here is aimed at increasing knowledge on purine metabolism in ruminants and hence the quantification of microbial cells entering the small intestine from urinaη excretion of purine derivatives. Nucleic acid metabolisms of micro-organisms in the rumen, digestion and absorption of nucleic acids entering the intestines, metabolisms of absorbed and endogenous purines involving de novo synthesis of nucleic acids in the ruminants host, and the relationship between absorbed and excreted purines are reviewed. Principal concerns about an amount of purine derivatives excreted in urine in relation to a change in purine-N: total-N ratios in rumen microbes that leave the rumen are discussed. The use of urinary excretion of purine derivatives as an indicator of the amount of microbial biomass leaving the rumen has to be done with some caution since it may be impossible to get a representative sample of microbes entering the intestine and thus yield estimates are relative rather than absolute.

Spondylolisthesis Accompanying Bilateral Pedicle Stress Fracture at Two Vertebrae

  • Kim, Hyeun-Sung;Kim, Seok-Won;Lee, Won-Tae
    • Journal of Korean Neurosurgical Society
    • /
    • v.51 no.6
    • /
    • pp.388-390
    • /
    • 2012
  • There has been no report of bilateral pedicle stress fractures involving two vertebrae. The authors describe a unique case of spondylolisthesis accompanying a bilateral pedicle stress fracture involving two vertebrae. De novo development of spondylolisthesis at the L5-S1 vertebrae accompanying a bilateral pedicle stress fracture at L4 and L5 was observed in a 70-year-old woman. The patient's medical history was unremarkable and she did not have any predisposing factors except severe osteoporosis. Interbody fusion with bone cement augmented screw fixation was performed. Surgical treatment resulted in good pain management and improved functional recovery.