• Title/Summary/Keyword: dc boost control

Search Result 350, Processing Time 0.027 seconds

A PFC Controller Design for 3-Phase Modular UPS (3상 모듈형 UPS용 PFC 제어기 설계)

  • Kim, Sang-Hoon;Park, Nae-Chun
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.75-79
    • /
    • 2011
  • In this paper a new PFC Controller for 3-Phase Modular UPS(Uninterruptible Power Supplies) is proposed. The PFC circuit for 3-Phase Modular UPS is implemented using three 1-phase 3-level boost PFC circuits. To control DC output voltage, single voltage controller considering imbalance of two capacitor voltages and to regulate AC input current three independent current controllers are used in proposed PFC controller. By the proposed method, without additional hardware, THD(Total Harmonic Distortion) of input currents can be readily limited below 5% which is the harmonic current requirements by IEEE std. 519. Its validity is verified by simulations and experiments.

  • PDF

State-of-Charge Balancing Control of a Battery Power Module for a Modularized Battery for Electric Vehicle

  • Choi, Seong-Chon;Jeon, Jin-Yong;Yeo, Tae-Jung;Kim, Young-Jae;Kim, Do-Yun;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.629-638
    • /
    • 2016
  • This paper proposes a State-of-Charge (SOC) balancing control of Battery Power Modules (BPMs) for a modularized battery for Electric Vehicles (EVs) without additional balancing circuits. The BPMs are substituted with the single converter in EVs located between the battery and the inverter. The BPM is composed of a two-phase interleaved boost converter with battery modules. The discharge current of each battery module can be controlled individually by using the BPM to achieve a balanced state as well as increased utilization of the battery capacity. Also, an SOC balancing method is proposed to reduce the equalization time, which satisfies the regulation of a constant DC-link voltage and a demand of the output power. The proposed system and the SOC balancing method are verified through simulation and experiment.

A study on the Conducted Noise Reduction in Three-Phase Boost Converter using Random Pulse Width Modulation (Random PWM 기법을 이용한 3상 승압형 컨버터 전도노이즈 저감에 관한 연구)

  • Jung, Dong-Hyo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.120-125
    • /
    • 2002
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. In the switching-mode power converter, the output voltage is generally controlled by varying the duty ratio of main switch. When a converter operates in steady state, duty ratio of the converter is kept constant. So the power of switching noise is concentrated in specific frequencies. Generally, to reduce the EMI and improve the immunity of converter system, the switching frequency of converter needs to be properly modulated during a rectified line period instead of being kept constant. Random Pulse Width Modulation (RPWM) is performed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300V/1kW with 5%~30% white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

A Study on the Droop Method with Improved Current Distribution Characteristics (전류 분배 특성이 향상된 드룹 방법에 관한 연구)

  • Jang, Paul
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.785-792
    • /
    • 2019
  • In parallel operation of multiple power converter modules, equal power distribution among modules shall be made to improve the reliability of the system. In this paper, a novel droop method is proposed to present improved current distribution characteristics. In the proposed method, if the current in each module become greater than the current set-point value, the output voltage set-point is raised to improve the current distribution characteristics. Meanwhile, when the output voltage is to be managed within the tolerance range, the range of the usable control IC reference value ($v_{ref}$) will be reduced if the output voltage setting is always raised. Thus, in case the output voltage set-point among modules is reversed, the downward adjustment is introduced. The proposed method was experimentally validated with a 17.5V/500mA prototype of two boost converters operating in parallel.

A study on the Conducted Noise Reduction in Random PWM (Random PWM 기법을 이용한 전도노이즈 저감)

  • Jeong, Dong-Hyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.154-158
    • /
    • 2006
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. Random Pulse Width Modulation (RPWM) is peformed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300v/1kW with $5%{\sim}30%$ white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

  • PDF

Robust Active LED Driver with High Power Factor and Low Total Harmonic Distortion Compatible with a Rapid-Start Ballast

  • Park, Chang-Byung;Choi, Bo-Hwan;Cheon, Jun-Pil;Rim, Chun-Taek
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.226-236
    • /
    • 2014
  • A new active LED driver with high power factor (PF) and low total harmonic distortion (THD) compatible with a rapid-start ballast is proposed. An LC input filter is attached to the ballast to increase PF and reduce THD. A boost converter is then installed to regulate the LED current, where an unstable operating region has been newly identified. The unstable region is successfully stabilized by feedback control with two zeroes. The extremely high overall system of the 10th order is completely analyzed by the newly introduced phasor transformed circuits in static and dynamic analyses. Although a small DC capacitor is utilized, the flicker percentage of the LED is drastically mitigated to 1% by the fast controller. The proposed LED driver that employs a simple controller with a start-up circuit is verified by extensive experiments whose results are in good agreement with the design.

Development of High-speed Elevator Drive System using Permanent-magnet Synchronous Motor (영구 자석형 동기 전동기를 이용한 고속 엘리베이터 구동 시스템 개발)

  • Ryu Hyung-Min;Kim Sung-Jun;Sul Seung-Ki;Kwon Tae-Seok;Kim Ki-Su;Shim Young-Seok;Seok Ki-Riong
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.385-388
    • /
    • 2001
  • In this paper, the gearless traction machine drive system using a permanent-maget motor for high-speed elevators is addressed. This application of permanent-magnet motor to the elevator traction machine enables several improvements including higher efficiency, better ride comfort, smaller size and weight, and so on. PWM boost converter is also adopted so that DC-link voltage regulation, hi-directional power flow, and controllable power factor with reduced input current harmonics are possible. To increase reliability and performance, the control board, which can include the car and group controller as well as PWM converter and inverter controller, is designed based on TMS320VC33 DSP The simulator system for high-speed elevators has been developed so that the drive system of high-speed elevator can be tested without my limitation on ride distance and the load condition. Some experimental results are given to verify the effectiveness of the developed system.

  • PDF

The Design of PFC Converter based on Digital Controller (디지털 제어기를 이용한 PFC 컨버터의 설계)

  • Lee, Hyeok-Jin;Ju, Jeong-Gyu;Yang, O;An, Tae-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.987-990
    • /
    • 2003
  • 산업현장에서의 인터넷환경 및 원격 제어를 위한 시스템 개발에서 신뢰성이 있고 경제적이며 지능적인 Power Supply가 요구되고 있다. 최근 통신시스템의 Power Supply는 수 kA이상의 출력전류를 가지고 있으며 최소 10개 이상의 모듈로 이루어져 있다. High-End 서버 시스템과 같이 수백 개의 마이크로프로세서를 내장한 시스템은 수십 kW의 전력을 소모한다. 이들이 사용하는 Power Supply는 별도의 시스템 제어기와의 통신으로 시스템에서 발생하는 발열, 소모전력, Total Harmonic Distortion (THD)에 대한 정보를 바탕으로 시스템이 갖는 각각의 Module에 대해 효과적이고 신뢰성 있는 전력공급을 하여야 만다. Distributed Power System (DPS)에서 가장 중요만 역할을 담당하는 Power Factor Correction (PFC) AC-DC Converter의 디지털 제어는 시스템 제어기와의 통신능력을 충분히 고려하면서 DPS를 위한 적합한 솔루션을 제공할 것이다. 본 논문에서는 Digital Signal Processor (DSP)를 사용하여 PFC 제어에 필요한 전파정류전압, 입력전류, 출력전압을 계측하여 역률개선과 THD의 저감을 위한 전류의 추종을 제어하면서 이들 제어기에서의 파라미터를 PC를 통해 모니터하여 최근의 추세를 만족시킬 수 있는 시스템을 구현할 수 있을 것으로 사료된다.

  • PDF

A Study on OBC Integrated 1.5kW LDC Converter for Electric Vehicle. (전기자동차용 OBC 일체형 1.5kW급 LDC 컨버터에 대한 연구)

  • Kim, Hyung-Sik;Jeon, Joon-Hyeok;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.456-465
    • /
    • 2019
  • PHEV(Plug in Hybrid Electric Vehicle) and BEV(Battery Electric Vehicle) equip high voltage batteries to drive motor and vehicle electric system. Those vehicle require OBC(On-Board Charger) for charging batteries and LDC(Low DC/DC Converter) for converting from high voltage to low voltage. Since the charger and the converter actually separate each other in electrical vehicles, there is a margin to reduce the vehicle weight and area of installation by integration two systems. This paper studies a 1.5kW LDC converter that can be integrated into an OBC using an isolated current-fed converter by simplifying the design of LDC transformers. The proposed LDC can control the final output voltage of the LDC by using a fixed arbitrary output voltage of the bidirectional buck-boost converter, so that Compared to the existing OBC-LDC integrated system, it has the advantage of simplifying the transformer design considering the battery voltage range, converter duty ratio and OBC output turn ratio. Prototype of the proposed LDC was made to confirm normal operation at 200V ~ 400V input voltage and maximum efficiency of 91.885% was achieved at rated load condition. In addition, the OBC-LDC integrated system achieved a volume of about 6.51L and reduced the space by 15.6% compared to the existing independent system.

Development of High-Speed Elevator Drive System using Permanent-magnet Synchronous Motor (영구 자석형 동기 전동기를 이용한 고속 엘리베이터 구동 시스템 개발)

  • 류형민;김성준;설승기;권태석;김기수;심영석;석기룡
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.538-545
    • /
    • 2001
  • In this paper a gearless drive system using a permanent-maget synchronous motor for high speed elevators is addressed. The application of permanent magnet synchronous motor to an elevator traction machine enables several improvements including higher efficiency better ride comfort smaller size and lighter weight and so on A PWM boost converter has been also adopted so that DC-link voltage regulation bi-directional power flow and controllable power factor with reduced input current harmonics are possible. To increase the reliability and performance of overall control system the unified control board which can include the car and group controller as well as PWN converter/inverter controller has been designed based on a DSP TMS320VV33. In addition the dynamic load simulator system has been developed so that the drive system of high speed elevator can be tested and evaluated without and limitation on ride distance. Some experimental results are given to verify the effectiveness of the developed system.

  • PDF