• Title/Summary/Keyword: dbh

Search Result 607, Processing Time 0.022 seconds

Host Preference and Habitat Characteristics of the Endangered Mistletoe Species, Loranthus tanakae in Korea (멸종위기식물 종 꼬리겨우살이의 기주선호성과 서식환경 특성)

  • Lee, Sugwang;Kang, Hoduck
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.441-448
    • /
    • 2011
  • The objective of this study was to clarify the distribution, host preference and habitat characterstics of the endangered mistletoe species, Loranthus tanakae in Korea. Seven sites were selected for sampling in Gangwon Province, located in middle of Korea. Parameters including DBH, attached height, twig death, and the number of L. tanakae and Viscum album var. coloratum per tree for all infected individuals were investigated. One thousand, two hundred and seventy L. tanakae plants were found on the 420 host trees with 665 V. album var. coloratum on 227 of the trees. The infested host trees belonged to eight species and one variety species from six genera and five families. The highest percentage (86.9%) of individuals of L. tanakae were growing on Fagaceae. The infected trees occurred between altitudes of 420 m and 1,250 m above the sea level, but most of them were between 600 m and 900 m. The mean DBH and heights of parasitism were 38.6 cm and 13.0 m, respectively. Twig death was also observed on 300 host trees (71.4%) and 1.5 twig per tree. Most of the populations and the distribution of L. tanakae were highly affected by DBH out of some individual tree characteristics.

Development of Estimation Equation for Minimum and Maximum DBH Using National Forest Inventory (국가산림자원조사 자료를 이용한 최저·최고 흉고직경 추정식 개발)

  • Kang, Jin-Taek;Yim, Jong-Su;Lee, Sun-Jeoung;Moon, Ga-Hyun;Ko, Chi-Ung
    • Journal of agriculture & life science
    • /
    • v.53 no.6
    • /
    • pp.23-33
    • /
    • 2019
  • In accordance with a change in the management information system containing the management record and planning for the entire national forest in South Korea by an amendment of the relevant law (The national forest management planning and methods, Korea Forest Service), in this study, average, the maximum, and the minimum values for DBH were presented while only average values were required before the amendment. In this regard, there is a need for an estimation algorithm by which all the existing values for DBH established before the revision can be converted to the highest and the lowest ones. The purpose of this study is to develop an estimation equation to automatically show the minimum and the maximum values for DBH for 12 main tree species from the data in the national forest management information system. In order to develop the estimation equation for the minimum and the maximum values for DBH, there was exploited the 6,858 fixed sample plots of the fifth and the sixth national forest inventory between in 2006 and 2015. Two estimation models were applied for DBH-tree age and DHB-tree height using such growth variables as DBH, tree age, and height, to draw the estimation equation for the maximum and the minimum values for DBH. The findings showed that the most suitable model to estimate the minimum and the maximum values for DBH was Dmin=a+bD+cH, Dmax=a+bD+cH with the variables of DBH and height. Based on these optimal models, the estimation equation was devised for the minimum and the maximum values for DBH for the 12 main tree species.

A Comparison on the Forest Type of Coastal Disaster Prevention Forest Between the Coastal Areas in Korea (우리나라 해안별 해안방재림의 유형특성 비교)

  • Kim, Chan-Beom;Park, Ki-Hyung;Lee, Chang-Woo;Youn, Ho-Joong;Kim, Kyongha
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.4
    • /
    • pp.564-573
    • /
    • 2014
  • The objective of this study was to select a representative coastal disaster prevention forest type for each coastal area. In this study, we used cluster analysis with the results obtained from investigation for density of growing stock, tree height, DBH, and forest width and length of major coastal disaster prevention forests distributed in the west, the south, and the east coasts. The results showed that the coastal disaster prevention forests for each coast were classified into two types: a forest type with small DBH and high growing stock density (W1) or with high tree height (W2) in the west coast, a forest type with small tree height (S1) or with large DBH (S2) in the south coast, and a forest type with small growing stock density (E1) or with small tree height and low DBH (E2) in the east coast. The coastal disaster prevention forests located in Gurye beach (Hwangchon-ri, Wonbuk-myeon, Taean-gun, Chungcheongnam-do) and in Gohsapo beach (Unsna-ri, Byeonsan-myeon, Buan-gun, Jeollabuk-do) were selected as the representative forests of W1 and W2, respectively. In addition, the coastal disaster prevention forests located in Namyang beach (Namyang-ri, Seolcheon-myeon, Namhae-gun, Gyeongsangnam-do) and in Donggo beach (Donggo-ri, Sinji-myeon, Wando-gun, Jeollanam-do) were selected as the representative forests of S1 and S2, respectively. Last, the coastal disaster prevention forests located in Bonggil beach (Bonggil-ri, Yangbuk-myeon, Gyeongju-si, Gyeongsangbuk-do) and in Anmeok beach (Gyeonso-dong, Gangneung-si, Gangwon-do) were selected as the representative forests of E1 and E2, respectively. Our finding is expected to be used as baseline data in establishing the most appropriate coastal disaster prevention forest for each coast.

Stand Structure and Seedling Recruitment of Abies holophylla Stands in Yong-In Area, Gyeonggi (경기도 용인 지역 전나무 임분의 구조 및 천연 갱신)

  • Park, Pil-Sun;Jeon, Yoon-Goo
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.1
    • /
    • pp.153-162
    • /
    • 2010
  • Abies holophylla Maxim. is a shade tolerant species that has potential to be used for continuous cover forestry system. Stand structure and natural regeneration of A. holophylla stands in Yong-In area located in the central part of Korea was investigated to estimate the self sustainability of A. holophylla plantation. Species composition, diameter at breast height (DBH) and height distribution of trees larger than 2 cm DBH were measured in ten stands in three study sites of Jeongsu-ri, Daedae-ri, and Hodong. Species and coverage of shrub layer, and A. holophylla seedlings were also investigated. While A. holophylla in non-managed stands (Jengsuri and Daedae-ri study sites) had the importance value of 40% and showed continuous diameter and age distribution, A. holophylla in Hodong site had narrow bell-shaped DBH distribution mostly concentrating between 25-35 cm DBH classes, and single canopy structure. Abies holophylla stands in Hodong have experienced occasional thinning and selective cutting. The correlation coefficient between age-DBH was significant but low ($R^2$=0.2, P=0.03), and similar aged A. holophylla had diverse DBH values. Continuos DBH distribution and multi-canopy structure of A. holophylla stands in Jeongsu-ri site show that natural regeneration of A. holophylla has been continuously occurred in this area. Seedling density of A. holophylla was between 2000 and 33000/ha, however, the number of trees in 2-5 cm DBH class was only 40-150 trees/ha, implying that the survival rate of seedlings is not high. Continuous natural regeneration and 0.6 cm/year of diameter growth rate of A. holophylla indicate that this area could be an appropriate habitat for this species, and A. holophylla plantation in this region seem to persist suggesting the possibility of managing the stands for continuous cover forestry system as well as selective harvesting practices.

Estimation and Comparison of Stem Volume for Larix kaempferi in South Korea using the Stem Volume Model (수간재적모델에 따른 일본잎갈나무의 수간재적 추정 및 비교)

  • Ko, Chi-Ung;Moon, Ga-Hyun;Yim, Jong-Su;Lee, Sun-Jeoung;Kim, Dong-Geon;Kang, Jin-Taek
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.592-599
    • /
    • 2019
  • This study aimed to develop an equation for estimating stem volume for Larix kaempferiin South Korea using independent variables, diameter at breast height (DBH), and height as being closely associated with stem volume. Analysis was conducted on the growth performance of 2,840 Larix kaempferi samples across South Korea after felling them and gleaning diameter data according to both stem height and stem analyses. In order to test the fitness of six different stem taper equations, empirical assessment was conducted for fitness index (FI), bias, mean, and absolute deviation (MAD), and coefficient variation (%CV). The two selectedmodels found to be optimal were the following: model one (V=a+bDBH2), established by employing DBH only; and model four (V=a+bDBH2H), established by utilizing DBH and height, respectively. The findings of non-linear regression indicated statistical significance (p < 0.05) in a and b, which were the coefficients for the intercepts and slopes of the models. The FI of the models ranged between 94% and 99%, and the bias was close to zero, while MAD ranged from 0.01 to 0.05, and %CV from 5.97 to 14.43, indicating a high level of fitness. Thus, using the suggested models, the basic information necessary for forest management was obtained, and an estimation of the stem volume was effected without delay soon after effecting DBH and height measurements.

Regeneration and Tending Practices for Natural Mixed Stands of Quercus mongolica-Abies holophylla II. Prediction of Futures Stand Structure using Rate of Increment (신갈나무-전나무 천연(天然) 혼효임분(混淆林分)의 갱신(更新) 및 무육방법(撫育方法) II. 생장률(生長率)을 이용(利用)한 미래(未來) 임분구조(林分構造)의 예측(豫測))

  • Shin, Man Yong;Lim, Joo Hoon;Chun, Young Woo;Ko, Yung Zu
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.2
    • /
    • pp.146-155
    • /
    • 1992
  • The natural mixed stand in Jindong-Ri, according to a recent study, showed the possibility of selection cutting as a silvicultural system based on the stand structure such as DBH distribution and height distribution. However, volume structure per DBH class of this stand had not a mature stand of selection cutting. In this study, wherefore, the rate of increment for DBH and volume was used to predict the future stand structure including volume distribution per DBH class. The possibility of selection cutting was then discussed using the future stand structure. From the prediction of future stand structure for 30 years per every 10 years, it could be concluded that the stand will be induced to selection cutting forest because of enough number of trees in objective DBH class and above, total volume per hectare, and the volume of large DBH class which can be harvested every year. However, this stand still did not show the structure of typical selection cutting which has the rate of 1 : 2 : 7 in the number of trees per hectare and the volume rate of 5 : 3 : 2 for large, medium, and small DBH class. This problem could be improved by appropriate silvicultural treatments.

  • PDF

Developing Dynamic DBH Growth Prediction Model by Thinning Intensity and Cycle - Based on Yield Table Data - (간벌강도 및 주기에 따른 동적 흉고직경 생장예측 모형개발 - 기존 수확표 자료를 기반으로 -)

  • Kim, Moonil;Lee, Woo-Kyun;Park, Taejin;Kwak, Hanbin;Byun, Jungyeon;Nam, Kijun;Lee, Kyung-Hak;Son, Yung-Mo;Won, Hyung-Kyu;Lee, Sang-Min
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.266-278
    • /
    • 2012
  • The objective of this study was developing dynamic stand growth model to predict diameter at breast height (DBH) growth by thinning intensity and cycle for major tree species of South Korea. The yield table, one of static stand growth models, constructed by Korea Forest Service was employed to prepare dynamic stand growth models for 8 tree species. In the process of model development, the thinning type was designated to thinning from below and equations for predicting the DBH change after thinning by different intensities was generated. In addition, stand density (N/ha), age and site index were adopted as explanatory variables for DBH prediction model. Thereafter, using the model, DBH growth under various silvicuture through integrating such equations considering thinning intensities, and cycles. The dynamic stand growth model of DBH developed in this study can provide understanding of effectiveness in forest growth and growing stock when thinning practice is performed in forest. Furthermore, results of this study is also applicable to quantitatively assess the carbon storage sequestration capability.

A Study for Growth Density on the Pinus thunbergii and Pinus densiflora Communities in area of Busan, Korea (부산일대 곰솔림과 소나무림의 생육 밀도에 관한 연구)

  • Lee, Sang-Cheol;Hong, Suk-Hwan;Kim, Dong-Pil;Choi, Song-Hyun;Ahn, Mi-Yeon
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.2
    • /
    • pp.215-224
    • /
    • 2018
  • The climate change is expected to weaken the habitat of Pinus densiflora and P. thunbergii, but they are still in high demand for planting. This study aims to suggest the rational community planting design based on natural forests' community structure in the southeastern region of Korea (warm temperate zone). For this study, we surveyed 22 plots of Pinus densiflora community and 60 plots of P. thunbergii community in Busan Metropolitan City which is located in the southeastern part of the Korean peninsula. We investigated the diameter of breath hight (DBH) and population of each tree layer in a $100m^2$ quadrat and used a regression analysis to derive a regression equation for estimating the mean number of planting individuals in each DBH. The coefficient between canopy layer's DBH and growth individuals per unit area ($100m^2$) was 0.700 for P. thunbergii communities and 0.533 for P. densiflora communities, indicating very high explanatory power by single factor. The predicted regression equation of between DBH and growth density was $Y=31.176e^{-0.055x}$ (X=DBH, Υ=growth individuals per $100m^2$) for P. thunbergii communities and $Y=38.351e^{-0.059x}$ for P. densiflora communities. Planting densities of P. densiflora communities and P. thunbergii communities in southeast region were higher than the central region.

Chemical control of Sycamore Lace Bug, Corythucha ciliata(Say) (버즘나무방페벌레의 약제방제(藥劑防除)에 관(關)한 연구(硏究))

  • Kim, Chul-Su;Park, Ji-Doo;Byun, Byung-Ho;Park, Il-Kwon;Chae, Chung-Suck
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.3
    • /
    • pp.384-388
    • /
    • 2000
  • For the control of Corythucha ciliata, the insecticidal activity of five commercial pesticides (Monocrotophos 25%SL, Phosphamidon 50%SL, Imidacloprid 20%DC, Thiamethoxam 15%DC and Acetamiprid 20%SL) were examined with trunk injection method in Seoul, Sanbon and Chungju. The insecticidal activity of five commercial pesticides was >88%. The insecticidal activity of Monocrotophos maintained 31 days later after trunk injection when treated leaves were supplied to this pest. This result indicates that one application of trunk injection is enough to control this pest, and this method can save the control cost compared with ground application which should be applied two or three times per year to control this pest. To make the model of treatment dosage at each D.B.H class (cm), $1.0m{\ell}/DBH$, $1.5m{\ell}/DBH$ and $2.0m{\ell}/DBH$ pesticide dosage was used. At <20cm, the insecticidal activity of $1.0m{\ell}$ dosage was >95%, and $1.5-2.5m{\ell}$ dosage was needed for the effective control at 30~50cm. More than $2.5m{\ell}$ dosage was effective at >50cm. Spray method was used in laboratory to select pesticides for ground application. Three commercial pesticides (Ethofenprox 20%EC, Ethofenprox 10%WP and Cyfluthrin 1%EC) were used, and all pesticides showed >95% insecticidal activity.

  • PDF

Estimating the Stand Structure Index Based on Lorenz Curve (Lorenz곡선(曲線)에 근거(根據)한 임분구조지수추정(林分構造指數推定))

  • Lee, Woo-Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.2
    • /
    • pp.158-166
    • /
    • 1997
  • This study presents the method to quantify the stand structure diversity or homogeneity. Gadow's dbh differentiation(Durchmesserdifferenzierung) is introduced which quantifies the horizontal stand structure by the ratio of the dbh between subject tree and neighbour trees. And new stand structure diversity index based on Lorenz curve, which is made by ratio of tree number and basal area or volume by dbh class, is presented. The horizontal stand structure index based on Lorenz curve has a value from 0 to 1 as Gadow's index, and approximates to 1 if the stand structure has high diversity. In the comparative analysis for performance, the new stand structure index based on Lorenz curve is considered to compare with the Gadow's index for describing the stand structure.

  • PDF