Browse > Article

Stand Structure and Seedling Recruitment of Abies holophylla Stands in Yong-In Area, Gyeonggi  

Park, Pil-Sun (Department of Forest Sciences, Seoul National University)
Jeon, Yoon-Goo (Department of Forest Sciences, Seoul National University)
Publication Information
Journal of Korean Society of Forest Science / v.99, no.1, 2010 , pp. 153-162 More about this Journal
Abstract
Abies holophylla Maxim. is a shade tolerant species that has potential to be used for continuous cover forestry system. Stand structure and natural regeneration of A. holophylla stands in Yong-In area located in the central part of Korea was investigated to estimate the self sustainability of A. holophylla plantation. Species composition, diameter at breast height (DBH) and height distribution of trees larger than 2 cm DBH were measured in ten stands in three study sites of Jeongsu-ri, Daedae-ri, and Hodong. Species and coverage of shrub layer, and A. holophylla seedlings were also investigated. While A. holophylla in non-managed stands (Jengsuri and Daedae-ri study sites) had the importance value of 40% and showed continuous diameter and age distribution, A. holophylla in Hodong site had narrow bell-shaped DBH distribution mostly concentrating between 25-35 cm DBH classes, and single canopy structure. Abies holophylla stands in Hodong have experienced occasional thinning and selective cutting. The correlation coefficient between age-DBH was significant but low ($R^2$=0.2, P=0.03), and similar aged A. holophylla had diverse DBH values. Continuos DBH distribution and multi-canopy structure of A. holophylla stands in Jeongsu-ri site show that natural regeneration of A. holophylla has been continuously occurred in this area. Seedling density of A. holophylla was between 2000 and 33000/ha, however, the number of trees in 2-5 cm DBH class was only 40-150 trees/ha, implying that the survival rate of seedlings is not high. Continuous natural regeneration and 0.6 cm/year of diameter growth rate of A. holophylla indicate that this area could be an appropriate habitat for this species, and A. holophylla plantation in this region seem to persist suggesting the possibility of managing the stands for continuous cover forestry system as well as selective harvesting practices.
Keywords
plantation; natural regeneration; shade tolerance; continuous cover forestry system;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 장동원, 윤영일. 2003. 내설악 전나무 고목림에 존재하는 고사목에 관한 기본 자료조사. 환경생물학회지 21(3): 251-256.   과학기술학회마을
2 Smith, D.M., Larson, B.C., Kelty, M.J., Mark, P. and Ashton, S. 1997. The Practice of Silviculture: Applied Forest Ecology, 9th edn. Wiley and Sons, NY. pp. 537.
3 Mori, A.S., Mizumachi, E. and Sprugel, D.G. 2008. Morphological acclimation to understory environments in Abies amabilis, a shade- and snow-tolerant conifer species of the Cascade Mountains, Washington, USA. Tree Physiology 28: 815-824.   DOI   ScienceOn
4 Nakagawa, M., Kurahashi, A. and Hogetsuc, T. 2003. The regeneration characteristics of Picea jezoensis and Abies sachalinensis on cut stumps in the sub-boreal forests of Hokkaido Tokyo University Forest. Forest Ecology and Management 180: 353-359.   DOI   ScienceOn
5 Oliver C.D. and Larson, B.C. 1996. Forest stand dynamics. John Wiley and Sons, New York. pp. 520.
6 Pommerening, A. 2006. Transformation to continuous cover forestry in a changing environment. Forest Ecology and Management 224: 227-228.   DOI   ScienceOn
7 Poorter, L., Bongers, F., Sterck, F.J. and Woll, H. 2005 Beyond the regeneration phase: differentiation of heightlight trajectories among tropical tree species. Journal of Ecology 93: 256-267.   DOI   ScienceOn
8 Quiring, D., Ostaff, D., Hartling, L., Lavigne, D., Moore, K. and DeMerchant, I. 2008. Temperature and plant hardiness zone influence distribution of balsam woolly adelgid damage in Atlantic Canada. Forestry chronicle 84: 558-562.
9 Sanchez-Gomez, D., Valladares, F. and Zavala, M.A. 2006. Functional traits and plasticity in response to light in seedlings of four Iberian forest tree species. Tree physiology 26: 1425-1433.   DOI   ScienceOn
10 Hongji, C. 1999. Ecological environment analysis of Abies holophylla plantations under different cutting systems. Journal of Forest Research 10: 181-182.   DOI
11 Houle, G. and Payette, S. 1991. Seed dynamics of Abies balsamea and Acer saccharum in a deciduous forest of northeastern north America. American Journal of Botany. 78(7): 895-905.   DOI   ScienceOn
12 Man, R., Kayahara, G.J., Rice, J.A. and MacDonald, G.B. 2008. Eleven-year responses of a boreal mixedwood stand to partial harvesting: Light, vegetation, and regeneration dynamics. Forest Ecology and Management 255: 697-706.   DOI   ScienceOn
13 Mason, B. and Kerr, G. 2001. Transforming even-aged conifer stands to continuous cover management. Forestry Commission Information Note 40. Forestry Commission, Edinburgh.
14 Metslaid, M., Jogiste, K., Nikinmaa, E., Moser, W.K. and Porcar-Castell, A. 2007. Tree variables related to growth response and acclimation of advance regeneration of Norway spruce and other coniferous species after release. Forest Ecology and Management 250: 56-63.   DOI   ScienceOn
15 Diaci, J. 2002. Regeneration dynamics in a Norway spruce plantation on a silver fir-beech forest site in the Slovenian Alps. Forest Ecology and Management 161: 27-38.   DOI   ScienceOn
16 Cheng, W.-C. and Fu, L.-K. (eds) 1978. Flora Reipublicae Popularis Sinicae. Tomus 7: Gymnospermae. Kexue Chubanshe, Beijing.
17 Curtis, J.T. and McIntosh, R.P. 1951. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32: 476-496.   DOI   ScienceOn
18 De Groot, R.C., Woodward, B.M. and LeVan, S. 1992. Alternative species and preservatives for wood roofing: laboratory decay studies. Forest Products Journal 42: 57-60.
19 Elustondo, D., Avramidis, S. and Zwick, R. 2005. The demonstration of increased lumber value using optimized lumber sorting and radio frequency vacuum drying. Forest Products Journal 55: 76-83.
20 European Landowners organization. http://ec.europa.eu/ environment/climat/pdf/ccmf.pdf (2009. 4. 30).
21 한상섭, 최홍선. 1983. 수목의 수분특성에 관한 생리. 생태학적 해석(II) P-V 곡선에 의한 잣나무와 전나무 지엽의 수분특성 인자와 계절변화. 한국임학회지 63(1): 8-14.
22 Hart, C. 1995. Alternative silvicultural systems to clearcutting in Britain: A Review. Forestry Commission Bulletin 115, HMSO, London.
23 정의경, 윤영일. 2005. 내설악 전(젓)나무 고목림 구조 기초 조사. 환경생물학회지 23(2): 141-145.   과학기술학회마을
24 정태성. 1996. 강원도 평창군 중왕산 지역 전나무의 임분 특성, 생장 양상 및 천연갱신에 영향을 미치는 요인. 서울대학교 산림자원학과 석사학위 논문.
25 한상억, 오창영, 김장수, 이재선. 2008. 전나무 수형목 풍매차대의 생장특성에 대한 유전력 및 개량효과. Journal of Forest Science 24: 41-46.
26 홍경락, 최영철, 강범용, 홍용표. 2001. 오대산 전나무림의 숲틈에서 발생된 전나무 치수들의 공간적 유전구조. 한국임학회지 90(4): 565-572.
27 이경재, 김지석, 최진우, 한봉호. 2008. 오대산국립공원 월정사 전나무숲 식생구조 분석. 한국환경생태학회지 22(2): 173-183.   과학기술학회마을
28 Boucher, Y., Arseneault D. and Siroi, L. 2009. Logging history of a heavily exploited southern boreal forest landscape: Insights from sunken logs and forestry maps. Forest Ecology and Management 258: 1359-1368.   DOI   ScienceOn
29 신창호, 홍경락, 최영철, 김원우. 1999. 강원도 오대산 전나무림의 식생구조 및 개체군 동태. 한국임학회 1999년 정기 총회 및 학술연구발표회 논문집. 한국임학회. pp. 57-58.
30 윤영일. 2007. 내설악 전나무 자연림 조사를 통한 고전천이론과 임분동태학에 관한 고찰 -Patch Dynamic과 임분 구조를 중점으로- 한국환경생물학회지 25(2): 158-167.   과학기술학회마을
31 임업연구원. 1992. 한국 수목도감 4판. 산림청. pp. 562.
32 김경하, 정용호, 정창기. 2003. 전나무림에서 간벌과 가지치기가 임내우 및 차단손실량에 미치는 영향. 한국임학회지 92(3): 276-283.
33 강성기, 김완수, 이원섭, 김지홍. 2001. 침엽수 조림지에서의 잔존임분밀도에 따른 임목생장 비교에 관한 연구. 임산에너지 22(2): 46-57.
34 기상청. 2009. 기상연보 2008. 기상청, 서울.
35 김갑태, 추갑철, 엄태원. 1996. 오대산국립공원 두로봉- 상황봉 지역의 삼림군집 구조에 관한 연구. 환경생태학회지 10(1): 160-168.
36 Silba, J. 1986. An international census of the Coniferae. In: Moldenke, H.N. and Moldenke, A.L. (eds). Phytologiamemoir no. 8. Corvallis, OR.
37 김지흥. 1992. 추이행렬 모델에 의한 오대산 활엽수-젓나무속 혼효림의 천이 경향 분석. 한국임학회지 81(4): 325-336.
38 남성열. 2000. 오대산국립공원 월정사지역 전나무림의 환경 및 식생구조에 관한 연구. 강원대학교 임학과 석사학위 논문.
39 신만용, 임주훈, 전영우, 고영주. 1992. 신갈나무-전나무 천연임분 혼효임분의 갱신및 무육방법(1)-임분구조와 작업종-. 한국임학회지 81(1): 21-29.