• Title/Summary/Keyword: data-packet loss

Search Result 327, Processing Time 0.021 seconds

ZigBee-based Real-time Wireless Networked Motor Control System (지그비 기반의 실시간 무선 네트워크 모터 제어시스템)

  • Park, Jung-Il
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.2
    • /
    • pp.103-109
    • /
    • 2020
  • This paper finds solutions for using ZigBee in wireless networked control system (WNCS). The round trip time delay and packet loss rate of the WNCS are measured. On the basis of these measured data, a playback buffer is used to solve the variable time delay in WNCS, and a Smith predictor is introduced to compensate for the time delay. The WNCS was able to be actually constructed to perform DC motor position control with 40 Hz sampling frequency.

A Reliable Transmission and Buffer Management Techniques of Event-driven Data in Wireless Sensor Networks (센서 네트워크에서 Event-driven 데이터의 신뢰성 있는 전송 및 버퍼 관리 기법)

  • Kim, Dae-Young;Cho, Jin-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6B
    • /
    • pp.867-874
    • /
    • 2010
  • Since high packet losses occur in multi-hop transmission of wireless sensor networks, reliable data transmission is required. Especially, in case of event-driven data, a loss recovery mechanism should be provided for lost packets. Because retransmission for lost packets is requested to a node that caches the packets, the caching node should maintains all of data for transmission in its buffer. However, nodes of wireless sensor networks have limited resources. Thus, both a loss recovery mechanism and a buffer management technique are provided for reliable data transmission in wireless sensor networks. In this paper, we propose a buffer management technique at a caching position determined by a loss recovery mechanism. The caching position of data is determined according to desirable reliability for the data. In addition, we validate the performance of the proposed method through computer simulations.

QoS-Guaranteed IP Mobility Management For Fast Moving Vehicles Using Multiple Tunnels (멀티 터널링을 이용한 고속 차량에서 QoS 보장 IP 이동성 관리 방법)

  • Chun, Seung-Man;Nah, Jae-Wook;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.11
    • /
    • pp.44-52
    • /
    • 2011
  • In this article, we present a QoS-guaranteed IP mobility management scheme of Internet service for fast moving vehicles with multiple wireless network interfaces. The idea of the proposed mechanism consists of two things. One is that new wireless connections are established to available wireless channels whenever the measured data rate at the vehicle equipped with mobile gateway drops below to the required data rate of the user requirement. The other is that parallel distribution packet tunnels between an access router and the mobile gateway are dynamically constructed using multiple wireless network interfaces in order to guarantee the required data rate during the mobile gateway's movement. By doing these methods, the required data rate of the mobile gateway can be preserved while eliminating the possible delay and packet loss during handover operation, thus resulting in the guaranteed QoS. The architecture of the IETF standard HMIPv6 has been extended to realize the proposed scheme, and detailed algorithms for the extension of HMIPv6 has been designed. Finally, simulation has been done for performance evaluation, and the simulation results show that the proposed mechanism demonstrates guaranteed QoS during the handover with regard to the handover delay, packet loss and throughput.

Deep Learning based Loss Recovery Mechanism for Video Streaming over Mobile Information-Centric Network

  • Han, Longzhe;Maksymyuk, Taras;Bao, Xuecai;Zhao, Jia;Liu, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4572-4586
    • /
    • 2019
  • Mobile Edge Computing (MEC) and Information-Centric Networking (ICN) are essential network architectures for the future Internet. The advantages of MEC and ICN such as computation and storage capabilities at the edge of the network, in-network caching and named-data communication paradigm can greatly improve the quality of video streaming applications. However, the packet loss in wireless network environments still affects the video streaming performance and the existing loss recovery approaches in ICN does not exploit the capabilities of MEC. This paper proposes a Deep Learning based Loss Recovery Mechanism (DL-LRM) for video streaming over MEC based ICN. Different with existing approaches, the Forward Error Correction (FEC) packets are generated at the edge of the network, which dramatically reduces the workload of core network and backhaul. By monitoring network states, our proposed DL-LRM controls the FEC request rate by deep reinforcement learning algorithm. Considering the characteristics of video streaming and MEC, in this paper we develop content caching detection and fast retransmission algorithm to effectively utilize resources of MEC. Experimental results demonstrate that the DL-LRM is able to adaptively adjust and control the FEC request rate and achieve better video quality than the existing approaches.

A Modified Random Early Detection Algorithm: Fuzzy Logic Based Approach

  • Yaghmaee Mohammad Hossein
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.337-352
    • /
    • 2005
  • In this paper, a fuzzy logic implementation of the random early detection (RED) mechanism [1] is presented. The main objective of the proposed fuzzy controller is to reduce the loss probability of the RED mechanism without any change in channel utilization. Based on previous studies, it is clear that the performance of RED algorithm is extremely related to the traffic load as well as to its parameters setting. Using fuzzy logic capabilities, we try to dynamically tune the loss probability of the RED gateway. To achieve this goal, a two-input-single-output fuzzy controller is used. To achieve a low packet loss probability, the proposed fuzzy controller is responsible to control the $max_{p}$ parameter of the RED gateway. The inputs of the proposed fuzzy controller are 1) the difference between average queue size and a target point, and 2) the difference between the estimated value of incoming data rate and the target link capacity. To evaluate the performance of the proposed fuzzy mechanism, several trials with file transfer protocol (FTP) and burst traffic were performed. In this study, the ns-2 simulator [2] has been used to generate the experimental data. All simulation results indicate that the proposed fuzzy mechanism out performs remarkably both the traditional RED and Adaptive RED (ARED) mechanisms [3]-[5].

An Algorithm for Preventing Data Loss in Hand-off between Packet Networks of 3GPPx (3GPPx 패킷망간 핸드오프 시 데이터 유실 방지 알고리즘)

  • Choi Seung-Kwon;Ryu Jae-Hong;Ji Hong-IL;Hwang Byeong-Seon;Cho Young-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.3
    • /
    • pp.237-242
    • /
    • 2005
  • In this paper, a fast handoff algorithm between PDSNs in 3GPPx network for a mobile node, is proposed. It introduces a method by which handoff can be performed without reestablishing PPP connection that may occur in the process of performing handoff between PDSNs. When the PDSN recognizes the mobile node moving into its coverage area, it can quickly establish a communication channel with the mobile node based on the already received subscriber information. As a result, handoff is performed without reestablishing PPP. Accordingly, handoff between PDSNs can be performed faster, removing time needed for establishing a PPP session with a terminal and for terminating a previously set up PPP session.

  • PDF

REVIEW ON ENERGY EFFICIENT OPPORTUNISTIC ROUTING PROTOCOL FOR UNDERWATER WIRELESS SENSOR NETWORKS

  • Ismail, Nasarudin;Mohamad, Mohd Murtadha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3064-3094
    • /
    • 2018
  • Currently, the Underwater Sensor Networks (UWSNs) is mainly an interesting area due to its ability to provide a technology to gather many valuable data from underwater environment such as tsunami monitoring sensor, military tactical application, environmental monitoring and many more. However, UWSNs is suffering from limited energy, high packet loss and the use of acoustic communication. In UWSNs most of the energy consumption is used during the forwarding of packet data from the source to the destination. Therefore, many researchers are eager to design energy efficient routing protocol to minimize energy consumption in UWSNs. As the opportunistic routing (OR) is the most promising method to be used in UWSNs, this paper focuses on the existing proposed energy efficient OR protocol in UWSNs. This paper reviews the existing proposed energy efficient OR protocol, classifying them into 3 categories namely sender-side-based, receiver-side-based and hybrid. Furthermore each of the protocols is reviewed in detail, and its advantages and disadvantages are discussed. Finally, we discuss potential future work research directions in UWSNs, especially for energy efficient OR protocol design.

A Model for Analyzing the Performance of Wireless Multi-Hop Networks using a Contention-based CSMA/CA Strategy

  • Sheikh, Sajid M.;Wolhuter, Riaan;Engelbrecht, Herman A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2499-2522
    • /
    • 2017
  • Multi-hop networks are a low-setup-cost solution for enlarging an area of network coverage through multi-hop routing. Carrier sense multiple access with collision avoidance (CSMA/CA) is frequently used in multi-hop networks. Multi-hop networks face multiple problems, such as a rise in contention for the medium, and packet loss under heavy-load, saturated conditions, which consumes more bandwidth due to re-transmissions. The number of re-transmissions carried out in a multi-hop network plays a major role in the achievable quality of service (QoS). This paper presents a statistical, analytical model for the end-to-end delay of contention-based medium access control (MAC) strategies. These strategies schedule a packet before performing the back-off contention for both differentiated heterogeneous data and homogeneous data under saturation conditions. The analytical model is an application of Markov chain theory and queuing theory. The M/M/1 model is used to derive access queue waiting times, and an absorbing Markov chain is used to determine the expected number of re-transmissions in a multi-hop scenario. This is then used to calculate the expected end-to-end delay. The prediction by the proposed model is compared to the simulation results, and shows close correlation for the different test cases with different arrival rates.

Provisioning QoS for WiFi-enabled Portable Devices in Home Networks

  • Park, Eun-Chan;Kwak, No-Jun;Lee, Suk-Kyu;Kim, Jong-Kook;Kim, Hwang-Nam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.720-740
    • /
    • 2011
  • Wi-Fi-enabled portable devices have recently been introduced into the consumer electronics market. These devices download or upload content, from or to a host machine, such as a personal computer, a laptop, a home gateway, or a media server. This paper investigates the fairness among multiple Wi-Fi-enabled portable devices in a home network when they are simultaneously communicated with the host machine. First, we present that, a simple IEEE 802.11-based home network suffers from unfairness, and the fairness is exaggerated by the wireless link errors. This unfairness is due to the asymmetric response of the TCP to data-packet loss and to acknowledgment-packet loss, and the wireless link errors that occur in the proximity of any node; the errors affect other wireless devices through the interaction at the interface queue of the home gateway. We propose a QoS-provisioning framework in order to achieve per-device fairness and service differentiation. For this purpose, we introduce the medium access price, which denotes an aggregate value of network-wide traffic load, per-device link usage, and per-device link error rate. We implemented the proposed framework in the ns-2 simulator, and carried out a simulation study to evaluate its performance with respect to fairness, service differentiation, loss and delay. The simulation results indicate that the proposed method enforces the per-device fairness, regardless of the number of devices present and regardless of the level of wireless link errors; furthermore it achieves high link utilization with only a small amount of frame losses.

Method on DTN Performance Acceleration and Packet Loss Minimization for Transfer Efficiency Maximizing (전송효율성 극대화를 위한 DTN 성능 가속 및 병목구간 패킷손실 최소화 방안)

  • Park, Jong-Seon;Noh, Min-Ki
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.37-43
    • /
    • 2018
  • Science DMZ is a network architecture that considers complicated network components such as dedicated network, DTN, and minimum security policy to maximize transfer efficiency. And DTN tuning is an essential component to take full advantage of Science DMZ's available bandwidth. In addition, tuning of network system should be performed concurrently to minimize packet loss due to network bottleneck. In this paper, we propose a tuning method of data transfer node and network system for maximizing transfer efficiency in Science DMZ network architecture. As a result of the performance measurement using the KREONET, the network performance after the DTN tuning shows 180% improvement than that of existing method without DTN tuning. In addition, performance of 9.4Gb/s was shown without loss of performance measurement after tuning network system applying shaping policy.