• Title/Summary/Keyword: data-packet loss

Search Result 327, Processing Time 0.026 seconds

On Estimation of Redundancy Information Transmission based on Systematic Erasure code for Realtime Packet Transmission in Bursty Packet Loss Environments. (연속 패킷 손실 환경에서 실시간 패킷 전송을 위한 systematic erasure code의 부가 전송량 추정 방법)

  • 육성원;강민규;김두현;신병철;조동호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1824-1831
    • /
    • 1999
  • In this paper, the data recovery performance of systematic erasure codes in burst loss environments is analyzed and the estimation method of redundant data according to loss characteristics is suggested. The burstness of packet loss is modeled by Gilbert model, and the performance of proposed packet loss recovery method in the case of using systematic erasure code is analyzed based on previous study on the loss recovery in the case of using erasure code. The required redundancy data fitting method for systematic erasure code in the condition of given loss property is suggested in the consideration of packet loss characteristics such as average packet loss rate and average loss length.

  • PDF

Design of a Reliable Data Diode System (신뢰성 있는 단방향 데이터 전송 시스템 설계)

  • Kim, Dongwook;Min, Byunggil
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.6
    • /
    • pp.1571-1582
    • /
    • 2016
  • One of the issues, which is dealed with in undirectional data transmission technology, is reducing the packet loss in TCP based data transfer. We can decrease the packet loss by using several well known error correction approaches. Although we utilize those previous approaches, the packet loss by both link errror and buffer overflow could be occurred. In this paper, we propose the RED(REliable Data diode). RED also uses the TCP proxy approach for supporting the TCP based data transfer which is similar with the existing unidirectional data transmission technologies. The RED transmission system could alleviate the packet loss caused by buffer overflow by exploiting the delaying transmission of TCP packets. Furthermore, in order to reduce the packett loss caused by link error in the unidirectional transmission link, the RED transmission system transmits one or more duplicated packets to the RED reception system by considering both the remaining resources and packet importance.

Adaptive Speech Streaming Based on Packet Loss Prediction Using Support Vector Machine for Software-Based Multipoint Control Unit over IP Networks

  • Kang, Jin Ah;Han, Mikyong;Jang, Jong-Hyun;Kim, Hong Kook
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1064-1073
    • /
    • 2016
  • An adaptive speech streaming method to improve the perceived speech quality of a software-based multipoint control unit (SW-based MCU) over IP networks is proposed. First, the proposed method predicts whether the speech packet to be transmitted is lost. To this end, the proposed method learns the pattern of packet losses in the IP network, and then predicts the loss of the packet to be transmitted over that IP network. The proposed method classifies the speech signal into different classes of silence, unvoiced, speech onset, or voiced frame. Based on the results of packet loss prediction and speech classification, the proposed method determines the proper amount and bitrate of redundant speech data (RSD) that are sent with primary speech data (PSD) in order to assist the speech decoder to restore the speech signals of lost packets. Specifically, when a packet is predicted to be lost, the amount and bitrate of the RSD must be increased through a reduction in the bitrate of the PSD. The effectiveness of the proposed method for learning the packet loss pattern and assigning a different speech coding rate is then demonstrated using a support vector machine and adaptive multirate-narrowband, respectively. The results show that as compared with conventional methods that restore lost speech signals, the proposed method remarkably improves the perceived speech quality of an SW-based MCU under various packet loss conditions in an IP network.

Modeling and Analysis of Burst Switching for Wireless Packet Data (무선 패킷 데이터를 위한 Burst switching의 모델링 및 분석)

  • Park, Kyoung-In;Lee, Chae Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.2
    • /
    • pp.139-146
    • /
    • 2002
  • The third generation mobile communication needs to provide multimedia service with increased data rates. Thus an efficient allocation of radio and network resources is very important. This paper models the 'burst switching' as an efficient radio resource allocation scheme and the performance is compared to the circuit and packet switching. In burst switching, radio resource is allocated to a call for the duration of data bursts rather than an entire session or a single packet as in the case of circuit and packet switching. After a stream of data burst, if a packet does not arrive during timer2 value ($\tau_{2}$), the channel of physical layer is released and the call stays in suspended state. Again if a packet does not arrive for timerl value ($\tau_{1}$) in the suspended state, the upper layer is also released. Thus the two timer values to minimize the sum of access delay and queuing delay need to be determined. In this paper, we focus on the decision of $\tau_{2}$ which minimizes the access and queueing delay with the assumption that traffic arrivals follow Poison process. The simulation, however, is performed with Pareto distribution which well describes the bursty traffic. The computational results show that the delay and the packet loss probability by the burst switching is dramatically reduced compared to the packet switching.

A Dynamic Packet Recovery Mechanism for Realtime Service in Mobile Computing Environments

  • Park, Kwang-Roh;Oh, Yeun-Joo;Lim, Kyung-Shik;Cho, Kyoung-Rok
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.356-368
    • /
    • 2003
  • This paper analyzes the characteristics of packet losses in mobile computing environments based on the Gilbert model and then describes a mechanism that can recover the lost audio packets using redundant data. Using information periodically reported by a receiver, the sender dynamically adjusts the amount and offset values of redundant data with the constraint of minimizing the bandwidth consumption of wireless links. Since mobile computing environments can be often characterized by frequent and consecutive packet losses, loss recovery mechanism need to deal efficiently with both random and consecutive packet losses. To achieve this, the suggested mechanism uses relatively large, discontinuous exponential offset values. That gives the same effect as using both the sequential and interleaving redundant information. To verify the effectiveness of the mechanism, we extended and implemented RTP/RTCP and applications. The experimental results show that our mechanism, with an exponential offset, achieves a remarkably low complete packet loss rate and adapts dynamically to the fluctuation of the packet loss pattern in mobile computing environments.

  • PDF

Compensating Transmission Delay and Packet Loss in Networked Control System for Unmanned Underwater Vehicle (무인잠수정 제어시스템을 위한 네트워크 전송지연 및 패킷분실 보상기법)

  • Yang, Inseok;Kang, Sun-Young;Lee, Dongik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.3
    • /
    • pp.149-156
    • /
    • 2011
  • Transmission delay and packet loss induced by a communication network can degrade the control performance and, even make the system unstable. This paper presents a method for compensating transmission delay and packet loss in a networked control system for unmanned underwater vehicle. The proposed method is based on Lagrange interpolation in order to satisfy the requirements of simplicity and model-independency. In this work, the lost/delayed data are estimated in real time by only using the past data without requiring any mathematical model of the controlled system. Consequently, the proposed method can be implemented independent of the controlled system, and also it can achieve fast and accurate compensation performance. The performance of the proposed technique is evaluated by numerical simulations with an unmanned underwater vehicle.

Comparative Performance Study of WDM Packet Switch for Different Traffic Arrival Approach

  • Reza, Ahmed Galib;Lim, Hyo-Taek
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.551-555
    • /
    • 2011
  • Optical packet switching is a promising technology, which can integrate both data and optical network. In this paper, we present a comparative study of various traffic arrival approaches in WDM packet switches. The comparison is made based on packet loss rate and average delay under uniform and self-similar Pareto traffic. Computer simulations are performed in order to obtain the switch performance metrics. Study shows that burstiness of data traffic has a strong negative impact in the performance of WDM packet switches.

Implementation and evaluation of lost packet recovery using low-bitrate redundant audio data (저비트율 잉여오디오 정보를 이용한 손실 패킷 복구 방법의 구현 및 성능 평가)

  • 박준석;고대식
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.7
    • /
    • pp.1-5
    • /
    • 1998
  • In this paper, recovery method with high-bitrate and low-bitrate coder was implemented in order to recover consecutive packet loss over the Internet. LPC was used as redundant audio data for recover of lost packets and RTP parcket format was modified for accommodation of redundant data. In measuring results using random packet loss rate with three redundant datra in every packet, it has shown that recovery rate was 80% in los rate of 50%. Since the processing delay for recovery of the lost packet was 200ms, this recovery method can be applied to real-time Internet sevice such as Internet phone.

  • PDF

Bandwidth Efficient Adaptive Forward Error Correction Mechanism with Feedback Channel

  • Ali, Farhan Azmat;Simoens, Pieter;de Meerssche, Wim Van;Dhoedt, Bart
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.322-334
    • /
    • 2014
  • Multimedia content is very sensitive to packet loss and therefore multimedia streams are typically protected against packet loss, either by supporting retransmission requests or by adding redundant forward error correction (FEC) data. However, the redundant FEC information introduces significant additional bandwidth requirements, as compared to the bitrate of the original video stream. Especially on wireless and mobile networks, bandwidth availability is limited and variable. In this article, an adaptive FEC (A-FEC) system is presented whereby the redundancy rate is dynamically adjusted to the packet loss, based on feedback messages from the client. We present a statistical model of our A-FEC system and validate the proposed system under different packet loss conditions and loss probabilities. The experimental results show that 57-95%bandwidth gain can be achieved compared with a static FEC approach.

Passive Overall Packet Loss Estimation at the Border of an ISP

  • Lan, Haoliang;Ding, Wei;Zhang, YuMei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3150-3171
    • /
    • 2018
  • In this paper, a heuristic method that leverages packet traces captured at the entire boarder of an ISP to distinguish and estimate the overall packet loss within an ISP's management domain (Intra_Path_Loss) and that in the outside Internet (Inter_Path_Loss) is proposed. Our method is inspired by that packet losses happened at different locations will cause different TCP sequence number patterns at the border of an ISP. Thereby, we leverage these TCP sequence number patterns to build a series of heuristic rules to estimate Intra_Path_Loss and Inter_Path_Loss, respectively. We do this work with an eye towards showing that the overall packet losses defined and estimated in this paper can provide the operators with some valuable information to help them precisely grasp the overall performance of network paths and narrow down the range of network anomalies. The proposed method is rigorously validated with simulations, and finally the results from a regional academic network JSERNET verify its effectiveness and practicability.