• 제목/요약/키워드: data-mining method

검색결과 1,372건 처리시간 0.214초

IPTV환경에서 온톨로지와 k-medoids기법을 이용한 개인화 시스템 (Personalized Recommendation System for IPTV using Ontology and K-medoids)

  • 윤병대;김종우;조용석;강상길
    • 지능정보연구
    • /
    • 제16권3호
    • /
    • pp.147-161
    • /
    • 2010
  • 최근 방송과 통신의 융합으로 TV에 통신이라는 기술이 접목되면서, TV 시청 형태에 많은 변화를 가져왔다. 이러한 형태의 TV 시청 변화는 서비스 선택의 폭을 넓혀주지만 프로그램을 선택을 위해 많은 시간을 투자해야 한다. 이러한 단점을 개선하기 위해서 본 논문에서는 IPTV환경에서 사용자의 다양한 콘텐츠를 제공하는 방송 환경에서 고객의 시청 정보를 바탕으로 고객 사용정보 온톨로지를 구축하고 그에 따라 고객을 k-medoids 방법을 이용해서 클러스터링 한다. 이를 바탕으로 고객이 선호하는 콘텐츠를 추천 하는 방법을 제안하였다. 실험부분에서 본 제안방법의 우수성을 기존의 방법과 비교하여 보여준다.

R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템 (An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis)

  • 이충석;이석주;최병구
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.79-96
    • /
    • 2012
  • 기술의 발전과 융합이 빠르게 이루어지고 있는 오늘날 유망기술을 어떻게 파악하여, 다양한 후보군들 중에서 최적의 R&D 대상을 어떻게 선정할 것인가에 대한 문제는 주요한 경영의사결정문제 중 하나로 부상하고 있다. 본 연구에서는 이러한 R&D 기술 선정 의사결정을 지원할 수 있는 새로운 지능형 의사결정지원시스템을 제안한다. 본 연구의 의사결정지원시스템은 크게 3가지 모듈로 구성되는데, 우선 첫 번째 모듈인 '기술가치 평가' 모듈에서는 기업이 관심을 갖고 있는 분야의 특허들을 분석하여 유망기술 파악에 요구되는 다양한 차원의 기술가치 평가지수 값들을 산출하는 작업이 이루어진다. 이를 통해, 현재 시점에서의 각 기술의 가치가 다양한 차원에서 평가가 이루어지고 나면, 두 번째 모듈인 '미래기술가치 예측' 모듈에서 이들의 시간 흐름에 따른 변화를 학습한 인공지능 모형을 토대로 각 후보기술들이 미래 시점에 어떤 가치지수값을 갖게 될 것인지 예측값을 산출하게 된다. 마지막 세 번째 모듈인 '최적 R&D 대상기술 선정 지원' 모듈에서는 앞서 두 번째 모듈에서 산출된 각 차원별 예상 가치지수값들을 적절히 가중합하여 기술의 종합적인 미래가치 예측값을 산출하여 의사결정자에게 제공하는 기능을 수행한다. 이를 통해 의사결정자가 자사에 적합한 최적의 R&D 대상기술을 선정할 수 있도록 하였다. 본 연구에서는 제안된 시스템의 적용 가능성을 검증하기 위해, 10년치 특허데이터에 인공신경망 기법을 적용하여 실제 기술가치 예측모형을 구축해 보고, 그 효과를 살펴본다.

사회연결망 분석을 활용한 연관규칙 확장기법 (Extension Method of Association Rules Using Social Network Analysis)

  • 이동원
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.111-126
    • /
    • 2017
  • 연관 상품 추천은 수많은 상품을 다루는 온라인 상거래에서 소비자의 상품 탐색 시간을 줄여주며 판매자의 매출 증대에 크게 기여한다. 이는 주문과 같은 거래의 빈도를 기반으로 생성되므로, 통계적으로 판매 확률이 높은 상품을 효과적으로 선별할 수 있다. 하지만, 판매 가능성이 높은 경우라도 신상품처럼 판매 초기에 거래 건수가 충분하지 않은 상품은 추천에서 누락될 수 있다. 연관 추천에서 누락된 상품은 이로 인해 노출 기회를 잃게 되고, 이는 거래 건수 감소로 이어져, 또 다시 추천 기회를 잃는 악순환을 겪을 수도 한다. 따라서, 충분한 거래 건수가 쌓이기 전까지 초기 매출은 일정 기간 동안 정체되는 현상을 보이는데, 의류 등과 같이 유행에 민감하거나 계절 변화에 영향을 많이 받는 상품은 이로 인해 매출에 큰 타격을 입을 수도 있다. 본 연구는 이와 같이 거래 초기의 낮은 거래 빈도로 인해 잘 드러나지 않는 상품 간의 잠재적인 연관성을 찾아 추천 기회를 확보할 수 있도록 연관 규칙을 확장하기 위한 목적으로 수행되었다. 두 상품 간에 직접적인 연관성이 나타나지 않더라도 다른 상품을 매개로 두 상품 간의 잠재적 연관성을 예측할 수 있을 것이며, 이런 연관성은 주문에서 나타나는 상품 간 상호작용으로 표현될 수 있으므로, 사회연결망 분석을 활용한 분석을 시도하였다. 사회연결망 분석기법을 통해 각 상품의 속성과 두 상품 간 경로의 특성을 추출하고 회귀분석을 실시하여, 두 상품 간 경로의 최단 거리 및 경로의 개수, 각 상품이 얼마나 많은 상품과 연관성을 갖는지, 두 상품의 분류 카테고리가 어느 정도 일치하는지가 두 상품 간의 잠재적 연관성에 미친다는 것을 확인하였다. 모형의 성능을 평가하기 위해, 일정 기간의 주문 데이터로부터 연결망을 구성하고, 이후 10일 간 생성될 상품 간 연관성을 예측하는 실험을 진행하였다. 실험 결과는 모형을 적용하지 않는 경우보다 제안 모형을 활용할 때 훨씬 많은 연관성을 찾을 수 있음을 보여준다.

용출액의 pH 변화가 토양내 중금속 용출에 미치는 영향과 그에 따른 국내 토양 오염 공정시험방법의 문제점 (The Effects of pH Change in Extraction Solution on the Heavy Metals Extraction from Soil and Controversial Points for Partial Extraction in Korean Standard Method)

  • 오창환;유연희;이평구;이영엽
    • 자원환경지질
    • /
    • 제36권3호
    • /
    • pp.159-170
    • /
    • 2003
  • 전주시 하천 퇴적물시료, 호남고속도로 주변의 토양과 퇴적물 시료, 광산주변 광미 및 토양시료를 대상으로 토양오염 공정시험방법상의 용출법, 0.1N 유지용출법, Tessir et al.(1979)의 연속추출방법을 적용하여 중금속을 추출하고 그 결과를 비교하였다. 공정시험방법상의 용출법 사용시 산에 대한 완충능력이 있는 시료는 용출액의 pH 1(0.1N HCl)이 유지되지 못했고 용출액의 pH가 최고 8.0까지 증가하였다. 또한, 토양오염 공정시험방법상의 용출법 사용시 중금속 추출량(HPE)/0.1 N 유지용출법 사용시 중금속 추출량(HPEM) 값의 평균치와 범위는 Cd의 경우 0.479와 0.145~0.929, Zn의 경우 0.534와 0.078~0.928, Mn의 경우 0.432와 0.041~0.992, Cu의 경우 0,359와 0.011~0.874, Cr의 경우 0.150과 0.018~0.530, Pb의 경우 0.219와 0.003~0.853, 그리고 Fe의 경우 0.088과 1.73${\times}$$10^{-5}$~0.303이다. 이는 두 전처리 방법에 의해 추출된 중금속량의 차이가 Fe>Cr>Pb>Cu〉Mn>Cd>Zn 순임을 지시한다. HPE, HPEM과 연속추출법 비교시 Zn, Cd, Mn의 경우 추출량은 대체적으로 연속추출 3단계까지의 합$\geq$0.1N 유지용출법>연속추출 2단계까지의 합$\geq$용출법 순이었으며, Cr과 Fe의 경우 연속추출 3단계까지 합》0.1N 유지용출법>용출법 순이었으며 연속추출 2단계 까지 합은 Cr의 경우 0.1N 유지용출법의 추출량보다 낮았고 용출법의 추출량보다 높았다. Cu의 경우 연속추출 4단계까지의 합$\geq$0.1N 유지용출법>3단계까지의 합 용출법으로 나타났다. 0.1N유지위해 첨가된 염산의 양이 증가할수록, 즉 시료내의 산에 대한 완충능력이 증가할수록 HPE/HPEM 값이 감소하며, 완충능력이 큰 시료의 경우 모든 원소에서 HPE/HPEM이 0.2보다 낮다. 완충능력이 낮은 시료의 경우 Zn, Cd, Mn, Cu는 연속추출 1,2단계의 합과 연속추출 3단계의 중금속 추출함량간의 차이가 적고, 다른 원소에 비해서 상대적인 유동도가 높기 때문에 HPE/HPEM이 대채적으로 0.2보다 높으며 0.6이상의 값을 갖는 시료가 많다. 그러나, Fe, Cr의 경우는 상대적으로 Zn, Cd, Mn, Cu에 비해 유동도가 낮고, 연속추출 3단계의 함량이 1+2단계의 함량과 차이가 커 완충능력이 낮은 시료의 HPE/HPEM값도 전반적으로 0.2보다 낮다. 이러한 연구결과는 국내 토양오염 공정시험방법상의 전처리 방법인 용출법이 장래에 장기적으로 산성비와 같은 환경피해에 노출되어 토양의 완충능력이 감소하거나 상실될 수 있는 지역의 오염평가에 적합치 않을 가능성을 제시한다.

타임스탬프를 갖는 이벤트 시퀀스의 인덱스 기반 검색 (Index-based Searching on Timestamped Event Sequences)

  • 박상현;원정임;윤지희;김상욱
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제31권5호
    • /
    • pp.468-478
    • /
    • 2004
  • 시퀀스 데이타베이스로부터 원하는 질의 패턴과 일치하는 모든 서브 시퀀스를 검색하는 것은 데이타 마이닝이나 바이오 인포매틱스 등 응용 분야에서 필수적인 연산이다. 예를 들어, 특정한 이벤트가 발생할 때마다 이벤트의 유형과 발생 시각을 기록하는 네트웍 이벤트 관리 시스템에서 네트웍 이벤트들의 연관 관계를 발견하기 위한 전형적인 질의 형태는 다음과 같다: 'CiscoDCDLinkUp이 발생한 후 MLMStatusUP과 TCPConnectionClose가 각각 20초 이내와 40초 이내에 순차적으로 발생하는 모든 경우를 검색하라.' 본 논문에서는 대규모 이벤트 시퀀스 데이타베이스를 대상으로 하여 위와 같은 질의를 효율적으로 처리할 수 있는 인덱싱 방법을 제안한다. 기존의 방법들이 비효율적인 순차적 검색이나 페이지화 하기 어려운 인덱스 구조에 의존하는데 반하여, 제안하는 방법은 저장 및 검색 효율이 입증된 다차원 공간 인덱스를 사용하여 질의를 만족하는 모든 서브 시퀀스를 착오 기각(false dismissal) 없이 신속하게 검색한다. 다차원 공간 인덱스의 입력은 이벤트 시퀀스 데이타베이스 상의 슬라이딩 윈도우 내에서 각 이벤트 유형이 최초로 발생한 시각을 기록한 n 차원 벡터가 된다. 여기서 n은 발생 가능한 이벤트 유형의 수이다. n이 큰 경우는 차원 저주(dimensionality curse) 문제가 발생할 수 있으므로 차원 선택이나 이벤트유형 그루핑을 이용하여 차원을 축소한다. 실험 결과에 의하면 제안된 방법은 순차적 검색이나 ISO-Depth 인덱스 기법에 비하여 몇 배에서 몇 십 배의 성능 향상 효과를 갖는 것으로 나타났다. 것으로 나타났다.예측치가 비교적 유사한 것으로 나타났으며, 평균 절도오차도 10% 수준이었다.HNP 처리구에서 가장 많았던 것으로 나타났다. 지상부 식생에 대한 총 양분함량은(N+P+K+Ca+Mg) 리기다소 나무가 703kg/ha 그리고 낙엽송이 869kg/ha였다.여 주었다.능성을 시도하였고, 그 결과는 다음과 같다. 1. Cholesterol을 제거한 cheese의 제조에서 최적조건은 균질압력 1200psi(70kg$cm^2$), 균질온도 $70^{\circ}$, $\beta$-cyclodextrin 첨가량 2%였으며, 이때 우유의 cholesterol의 제거율이 86.05%로 가장 높게 나타났다. 2. Cholesterol을 제거한 cheese들의 수율은 모두 12.53%(control 10.54%) 이상으로 균질 처리가 cheese의 수율을 18.88%이상 향상시키는 것으로 나타났다. 3. 유지방 함량 23.80%인 control 치즈의 cholesterol 함량은 81.47mg/100g이었고, 균질압력 1200psi(91kg/$cm^2$)에 $\beta$-cyclodextrin 2%를 첨가한 cheese에서는 cholesterol 함량이 20.15mg/100g으로 cholesterol 제거율이 75.27%로 가장 높게 나타났다. 4. Meltability는 균질압력 1200psi(91kg/$cm^2$)에 $\beta$-cyclodextrin 1과 2%로 처리한 치즈에서 2.25cm(control 3.34cm)로 가장 낮았으며,

기간별 이슈 매핑을 통한 이슈 생명주기 분석 방법론 (Analyzing the Issue Life Cycle by Mapping Inter-Period Issues)

  • 임명수;김남규
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.25-41
    • /
    • 2014
  • 최근 스마트 기기를 통해 소셜미디어에 참여하는 사용자가 급격히 증가하고 있다. 이에 따라 빅데이터 분석에 대한 관심이 높아지고 있으며 최근 포털 사이트에서 검색어로 자주 입력되거나 다양한 소셜미디어에서 자주 언급되는 단어에 대한 분석을 통해 사회적 이슈를 파악하기 위한 시도가 이루어 지고 있다. 이처럼 다량의 텍스트를 통해 도출된 사회적 이슈의 기간별 추이를 비교하는 분석을 이슈 트래킹이라 한다. 하지만 기존의 이슈 트래킹은 두 가지 한계를 가지고 있다. 첫째, 전통적 방식의 이슈 트래킹은 전체 기간의 문서에 대해 일괄 토픽 분석을 실시하고 각 토픽의 기간별 분포를 파악하는 방식으로 이루어지므로, 새로운 기간의 문서가 추가되었을 때 추가된 문서에 대해서만 분석을 추가 실시하는 것이 아니라 전체 기간의 문서에 대한 분석을 다시 실시해야 한다는 실용성 측면의 한계를 갖고 있다. 둘째, 이슈는 끊임 없이 생성되고 소멸될 뿐 아니라, 때로는 하나의 이슈가 둘 이상의 이슈로 분화하고 둘 이상의 이슈가 하나로 통합되기도 한다. 즉, 이슈는 생성, 변화(병합, 분화), 그리고 소멸의 생명주기를 갖게 되는데, 전통적 이슈 트래킹은 이러한 이슈의 가변성을 다루지 않았다는 한계를 갖는다. 본 연구에서는 이러한 한계를 극복하기 위해 대상 기간 전체의 문서를 한꺼번에 분석하는 방식이 아닌 세부 기간별 문서에 대해 독립적인 분석을 수행하고 이를 통합할 수 있는 방안을 제시하였으며, 이를 통해 새로운 이슈가 생성되고 변화하며 소멸되는 전체 과정을 규명하였다. 또한 실제 인터넷 뉴스에 대해 제안 방법론을 적용함으로써, 제안 방법론의 실무 적용 가능성을 분석하였다.

충청 동부지역 지각의 P, S파 감쇠 분석 (Attenuation of High-Frequency P and S Waves in the Crust of Eastern Part of Choongchung Provinces)

  • 경재복;김규동
    • 한국지구과학회지
    • /
    • 제24권8호
    • /
    • pp.684-690
    • /
    • 2003
  • 최근 새로운 행정수도의 이전이 예상된 남한 중부 충청지방에 대한 관심이 고조되고 있다. 우리는 이 지역에서 1996년 9월 이후 한국교원대학교 지진관측망을 설치하석 운영 중이며, 이 관측망 중 2개 관측소에서 기록된 60개의 지진자료를 바탕으로 확장 Coda 규격화법을 이용하여 Q$_P^{-1}$ 과 Q$_S^{-1}$을 동시에 측정하였다. 부족한 자료를 보충하기 위해서 한국지질자원연구원 관측망 중 한국교원대학교 관측망과 지리적으로 인접한 1개의 관측소에서 기록된 33개의 지진자료도 함께 분석하였다. 측정된 Q$_P^{-1}$은 (1.9${\pm}$3.0)${\times}$10$^{-3}$에서 (5.4${\pm}$1.5)${\times}$10$^{-4}$으로, Q$_S^{-1}$은 (2.4${\pm}$1.4)${\times}$10$^{-3}$에서 (6.3${\pm}$1.1)${\times}$10$^{-4}$으로 주파수가 3.0Hz에서 24Hz로 늘어남에 따라 줄어드는 주파수 의존적 특성을 보인다. 이 값을 주파수의 지수형태로 나타내면 Q$_P^{-1}$=0.003f^{-0.62}$, Q$_S^{-1}$=0.006f$^{-0.071}$이다. 이 값들은 지진학적으로 안정한 전 세계의 다른 지역의 값과 유사하며 남한 남동부 지역값에 비해서는 다소 약한 주파수 의존을 나타낸다. 이는 고주파수에서 높은 Q$^{-1}$값 때문이다. 남한 남동부와 충청 동부지역 간의 Q$^{-1}$의 차이를 평가하기 위해서는 보다 많은 관측이 요구된다.

마켓 인사이트를 위한 상품 리뷰의 다차원 분석 방안 (Multi-Dimensional Analysis Method of Product Reviews for Market Insight)

  • 박정현;이서호;임규진;여운영;김종우
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.57-78
    • /
    • 2020
  • 인터넷의 발달로, 소비자들은 이커머스에서 손쉽게 상품 정보를 확인한다. 이때 활용되는 상품 리뷰는 사용자 경험을 토대로 작성되어 구매의사결정의 효율성을 높일 뿐만 아니라 상품 개발에 도움을 주기도 한다. 하지만, 방대한 양의 상품 리뷰에서 관심있는 평가차원의 세부내용을 파악하는 데에는 많은 시간과 노력이 소비된다. 예를 들어, 노트북을 구매하려는 소비자들은 성능, 무게, 디자인과 같은 평가차원에 대해 각 차원별로 비교 상품의 평가를 확인하고자 한다. 따라서 본 논문에서는 상품 리뷰에서 다차원 상품평가 점수를 자동적으로 생성하는 방안을 제안하고자 한다. 본 연구에서 제시하는 방안은 크게 2단계로 구성된다. 사전준비 단계와 개별상품평가 단계로, 대분류 상품군 리뷰를 토대로 사전에 생성된 차원분류모델과 감성분석모델이 개별상품의 리뷰를 분석하게 된다. 차원분류모델은 워드임베딩과 연관분석을 결합함으로써 기존 연구에서 차원과 단어들의 관련성을 찾기 위한 워드임베딩 방식이 문장 내 단어의 위치만을 본다는 한계를 보완한다. 감성분석모델은 정확한 극성 판단을 위해 구(phrase) 단위로 긍부정이 태깅된 학습데이터를 구성하여 CNN 모델을 생성한다. 이를 통해, 개별상품평가 단계에서는 구 단위의 리뷰에 준비된 모델들을 적용하고 평가차원별로 종합함으로써 다차원 평가점수를 얻을 수 있다. 본 논문의 실험에서는 대분류 상품군 리뷰 약 260,000건으로 평가모델을 구성하고, S사와 L사의 노트북 리뷰 각 1,011건과 1,062건을 실험데이터로 활용한다. 차원분류모델은 구로 분해한 개별상품 리뷰를 6개 평가차원으로 분류했고, 기존 워드임베딩 방식보다 연관분석을 결합한 모델의 정확도가 13.7% 증가했음을 볼 수 있었다. 감성분석모델은 문장보다 구 단위로 학습한 모델이 평가차원을 면밀히 분석함으로써 29.4% 더 높은 정확도를 보임을 확인했다. 본 연구를 통해 판매자, 소비자 모두가 상품의 다차원적 비교가 가능하다는 점에서 구매 및 상품 개발에 효율적인 의사결정을 기대할 수 있다.

데이터마이닝을 활용한 소프트웨어 개발인력의 업무 지속수행의도 결정요인 분석 (A Study of Factors Associated with Software Developers Job Turnover)

  • 전인호;박선웅;박윤주
    • 지능정보연구
    • /
    • 제21권2호
    • /
    • pp.191-204
    • /
    • 2015
  • 국내 소프트웨어(SW) 개발인력의 미충원율은 매우 높으며, 특히 2년 이상의 현장경력이 있는 고급 개발자의 부족문제는 심각하다. 최근 정부도 이를 인식하고, 정책적으로 SW개발 신규인력 양성에 힘을 기울이고 있다. 그러나, 이러한 노력은 초급개발자의 수급문제를 해결하는데 효과적일 수 있지만, 업계에서 요구하는 고급 개발자의 부족현상을 해결하는 근본적인 대책으로 인식되지는 못하고 있다. SW 전문개발자를 양성하기 위해서는 초급개발자들이 지속적으로 직무를 수행하여 풍부한 업무경험을 갖춘 고급 개발자로 성장해야 하기 때문이다. 이에, 본 연구는 국내 SW업체에서 근무하고 있는 개발관련 인력들의 업무 지속수행 의도를 조사하고, 이에 영향을 주는 주요요인들을 분석하였다. 이를 위해, 2014년 9월부터 10월까지 국내 SW업체에 근무하고 있는 현직 개발자 총 130명을 대상으로 설문조사를 수행하였으며, 이를 기반으로 SW개발업무 지속수행의도 및 이에 영향을 주는 요인들을 개발자의 특성, 직무환경, 그리고 SW개발자에 대한 사회적 인식 및 산업전망 등의 측면에서 분석하였다. 분석에는 데이터마이닝 기법들 중에서, 분석과정에서의 설명능력이 있는 회귀분석과 의사결정나무가 사용되었다. 회귀분석 결과, SW개발자가 스스로 인식하는 근무 가능한 연령이 높을수록, 내성적인 성향을 가질수록, 또한 적성에 맞아서 직무를 선택한 경우, 지속적 직무 수행 의도가 높은 것으로 나타났다. 이와 더불어, 선형회귀분석에서는 유의하지 않았으나, 규칙기반의 의사결정나무 분석에서 파악된 추가적 요인으로, 새로운 기술에 대한 학습능력 및 SW산업에 대한 전망이 직무 지속수행의도에 영향을 미치는 것으로 나타났다. 이러한 연구결과는 기업의 인적자원관리 및 고급 SW인력 양성정책에 활용될 수 있을 것으로 생각되며, 궁극적으로 SW개발인력의 직무 지속성을 증진시키는 데 기여할 수 있을 것으로 기대된다.

특허문서 필드의 기능적 특성을 활용한 IPC 다중 레이블 분류 (IPC Multi-label Classification based on Functional Characteristics of Fields in Patent Documents)

  • 임소라;권용진
    • 인터넷정보학회논문지
    • /
    • 제18권1호
    • /
    • pp.77-88
    • /
    • 2017
  • 최근 지식과 정보가 가치를 생산하는 지식기반사회로 접어들면서 지식재산권의 대표적인 형태인 특허에 대한 중요성이 매우 높아지고 있으며 출원되는 특허의 양도 매년 증가하고 있다. 방대한 양의 특허정보를 효과적으로 이용하기 위해서 특허문서를 그 발명의 기술적 주제에 따라 적절하게 분류하는 것이 필요하며 이를 위해 IPC(International Patent Classification)가 주로 사용되고 있다. 현재 주로 사람의 손으로 이뤄지는 특허문서의 IPC 분류과정의 효율성을 높이기 위하여 다양한 데이터마이닝과 기계학습 알고리즘을 기반으로 IPC 자동분류에 관한 연구들이 수행되어 왔다. 하지만 기존의 IPC 자동분류에 관한 연구의 대부분은 특허문서의 구조적 특징과 같은 특허문서 고유의 데이터 특성에 대한 고려보다는 다양한 기계학습 알고리즘을 특허문서로 적용하는 것에 초점을 맞춰왔다. 이에 본 논문에서는 IPC 자동분류를 위해 특허문서의 특징과 구조적 필드의 역할을 기반으로 특허문서 분류에 영향을 끼치는 두 가지 필드, 기술분야 및 배경기술 필드의 활용을 제안한다. 그리고 특허문서가 동시에 다수의 IPC 분류코드를 가지는 점을 반영하여 다중 레이블 분류(multi-label classification) 모델을 구축한다. 또한 IPC 다중 레이블 분류의 실제 현장에서의 적용 가능성 확인을 위해 630개의 범주를 가지는 IPC 서브클래스 레벨까지 분류 가능한 수법을 제안한다. 이를 위해 국내에서 등록된 564,793건의 특허문서를 대상으로 특허문서의 구조적 필드의 영향을 확인하기 위한 IPC 다중 레이블 분류 실험을 수행하였고, 그 결과 제목, 요약, 청구항, 기술분야 및 배경기술 필드를 활용한 실험에서 87.2%의 싱글매치 정확도를 얻었다. 이를 통해 기술분야 및 배경기술 두 필드가 IPC 서브클래스 레벨까지의 다중 레이블 분류의 정확도를 향상시키는데 중요한 역할을 하고 있음을 확인하였다.