• 제목/요약/키워드: data semantics

검색결과 252건 처리시간 0.016초

한국어 음소 최소대립쌍의 계량언어학적 연구: 초성 자음을 중심으로 (A quantitative study on the minimal pair of Korean phonemes: Focused on syllable-initial consonants)

  • 정지은
    • 말소리와 음성과학
    • /
    • 제11권1호
    • /
    • pp.29-40
    • /
    • 2019
  • 이 연구의 목적은 한국어 음소의 최소대립쌍 출현 양상에 대해 계량언어학적으로 알아보는 것이다. 최소대립쌍은 한 언어에서 음소의 체계를 세우는 데 중요한 역할을 하고, 기능부담량의 측정에도 중요한 척도가 됨에도 불구하고 아직까지 한국어 음소의 최소대립쌍에 대한 전면적인 연구가 이루어지지 않았다. 이를 위해 "우리말샘"의 표제어 325,715개의 발음을 대상으로 초성 위치에서의 자음 최소대립쌍의 개수를 절대수치와 상대수치로 산출하고, 최소대립쌍을 이루는 두 단어의 품사 관계에 대해서 분석했다. "우리말샘"을 연구의 대상으로 삼은 이유는 최소대립쌍 분석은 기본적으로 사전을 통해서 이루어져야 한다고 판단했고, 한국어 사전 중 규모가 가장 크기 때문이다. 연구 결과는 다음과 같다. 첫째, 최소대립쌍은 총 153가지, 337,135개였다. 개수가 많은 음소 쌍(/ㅅ-ㅈ/, /ㄱ-ㅅ/, /ㄱ-ㅈ/, /ㄱ-ㅂ/, /ㄱ-ㅎ/)은 평음의 비중이 높고, 개수가 적은 음소 쌍(/ㅃ-ㅋ/, /ㄹ-ㅃ/, /ㅉ-ㅋ/, /ㄸ-ㅋ/, /ㅆ-ㅋ/)은 경음의 비중이 높았다. 최소대립쌍 형성에 많은 역할을 담당하는 음소를 개별 음소 단위에서 살펴보면 /ㄱ, ㅅ, ㅈ, ㅂ, ㅊ/ 순으로 높게 나타났는데, 경구개음의 비율이 높게 나타난 것이 특징적이었다. 삼지적 상관속을 이루는 장애음의 최소 대립쌍 관계에도 조음 위치와 조음 방법에 따라 차이가 나타났다. 최소대립쌍의 절대수치와 상대수치의 상관계수는 0.937로 높은 상관관계를 보였다. 둘째, 최소대립쌍을 이루는 두 단어의 품사는 '명사-명사'의 최소대립쌍이 70.25%로 가장 많았고, 그다음으로 '동사-동사' 쌍이 14.77%로 나타나 이 두 유형이 전체 85% 이상을 차지했다. 초성 최소대립쌍의 품사 일치율은 87.91%로 나타나 최소대립쌍은 의미 형태적으로도 비슷한 범주로 묶일 수 있음을 확인할 수 있었다. 이 연구의 결과는 한국어 음소와 관련된 기초 자료로서 국어학, 언어 병리학, 언어 교육, 언어 습득, 음성 공학 등의 다양한 응용 분야에서 유용하게 활용될 수 있을 것이다.

효율적 자원 탐색을 위한 소셜 웹 태그들을 이용한 동적 가상 온톨로지 생성 연구 (Dynamic Virtual Ontology using Tags with Semantic Relationship on Social-web to Support Effective Search)

  • 이현정;손미애
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.19-33
    • /
    • 2013
  • 본 논문에서는 네트워크 기반 대용량의 자원들을 효율적으로 검색하기 위해 사용자의 요구사항에 기반해 검색에 요구되는 태그들 간의 의미론에 기반한 동적 가상 온톨로지(Dynamic Virtual Ontology using Tags: DyVOT)를 추출하고 이를 이용한 동적 검색 방법론을 제안한다. 태그는 소셜 네트워크 서비스를 지원하거나 이로부터 생성되는 정형 및 비정형의 다양한 자원들에 대한 자원을 대표하는 특성을 포함하는 메타적 정보들로 구성된다. 따라서 본 연구에서는 이러한 태그들을 이용해 자원의 관계를 정의하고 이를 검색 등에 활용하고자 한다. 관계 등의 정의를 위해 태그들의 속성을 정의하는 것이 요구되며, 이를 위해 태그에 연결된 자원들을 이용하였다. 즉, 태그가 어떠한 자원들을 대표하고 있는 지를 추출하여 태그의 성격을 정의하고자 하였고, 태그를 포함하는 자원들이 무엇인지에 의해 태그간의 의미론적인 관계의 설정도 가능하다고 보았다. 즉, 본 연구에서 제안하는 검색 등의 활용을 목적으로 하는 DyVOT는 태그에 연결된 자원에 근거해 태그들 간의 의미론적 관계를 추출하고 이에 기반 하여 가상 동적 온톨로지를 추출한다. 생성된 DyVOT는 대용량의 데이터 처리를 위해 대표적인 예로 검색에 활용될 수 있으며, 태그들 간의 의미적 관계에 기반해 검색 자원의 뷰를 효과적으로 좁혀나가 효율적으로 자원을 탐색하는 것을 가능하도록 한다. 이를 위해 태그들 간의 상하 계층관계가 이미 정의된 시맨틱 태그 클라우드인 정적 온톨로지를 이용한다. 이에 더해, 태그들 간의 연관관계를 정의하고 이에 동적으로 온톨로지를 정의하여 자원 검색을 위한 동적 가상 온톨로지 DyVOT를 생성한다. DyVOT 생성은 먼저 정적온톨로지로부터 사용자 요구사항을 포함하는 태그를 포함한 부분-온톨로지들을 추출하고, 이들이 공유하는 자원의 정도에 따라 부분-온톨로지들 간의 새로운 연관관계 여부를 결정하여 검색에 요구되는 최소한의 동적 가상 온톨로지를 구축한다. 즉, 태그들이 공유하는 자원이 무엇인가에 의해 연관관계가 높은 태그들 간에는 이들의 관계를 설명하는 새로운 클래스를 가진 생성된 동적 가상 온톨로지를 이용하여 검색에 활용한다. 온톨로지의 인스턴스는 자원으로 정의되고, 즉 이는 사용자가 검색하고자 하는 해로서 정의된다. 태그들 간의 관계에 의해 생성된 DyVOT를 이용해 기존 정적 온톨로지나 키워드 기반 탐색에 비해 검색해야 할 자원의 량을 줄여 검색의 정확성과 신속성을 향상 시킨다.