In this paper, we propose a customer profiling technique based on customer behavior for personalized products recommendation in Internet shopping mall. The proposed technique defines customer profile model based on customer behavior Information such as click data, buying data, market basket data, and interest categories. We also implement CBCPT(customer behavior based customer profiling technique) and perform extensive experiments. The experimental results show that CBCPT has higher MAE, precision, recall, and F1 than the existing other customer profiling technique.
Due to the recent rapid changes in society and wide spread of information devices, diverse digital information is utilized in a variety of economic and social analysis. Information related to the crime statistics by type of crime has been used as a major factor in crime. However, statistical analysis using only the structured data has the difficulty in the investigation by providing limited information to investigators and users. In this paper, structured data and unstructured data are analyzed by applying Korean Natural Language Processing (Ko-NLP) and the Latent Semantic Analysis (LSA) technique. It will provide a crime profile optimum system that can be applied to the crime profiling system or statistical analysis.
최근 빅데이터 산업의 확대로 고품질의 데이터를 확보하는 것이 중요한 이슈로 떠오르고 있다. 고품질의 데이터를 확보하기 위해서는 데이터에 품질에 대한 정확한 평가가 선행되어야 한다. 데이터의 품질은 데이터에 대한 통계와 같은 메타정보를 통해 평가할 수 있는데 이러한 메타정보를 자동으로 추출하는 기능을 데이터 프로파일링이라고 하다. 지금까지 데이터 프로파일링 소프트웨어는 기존의 데이터 품질 또는 시각화 관련 소프트웨어의 부품이나 추가적인 서비스로 제공되는 것이 일반적이었다. 따라서 프로파일링이 요구되는 다양한 환경에서 직접적으로 사용하기에는 적합하지 않았다. 본 논문에서는 이를 해결하기 위해 마이크로 서비스 아키텍처를 적용하여 다양한 환경에서 서비스가 가능한 데이터 프로파일링 소프트웨어의 개발 결과를 제시한다. 개발된 데이터 프로파일러는 restful API를 통해 데이터의 메타정보에 대한 요청과 응답을 제공하여 사용하기 쉬운 서비스를 제공한다. 또한, 특정 환경에 종속되지 않고 다양한 빅데이터 플랫폼이나 데이터 분석 도구들과 원활한 연계가 가능하다는 장점이 있다.
내장형 시스템의 요구사항이 증가함에 따라 내장형 시스템에서 동작하는 프로그램의 복잡도가 증가하고 있다. 이는 최적의 성능을 발휘하는 소프트웨어의 작성을 어렵게 만드는 요인이 된다. 본 논문은 내장형 시스템에 적합한 호스트/타겟 구조의 프로파일링 도구를 제안한다. 제안하는 도구는 교차 개발환경을 사용하는 내장형 시스템에 적합하도록 호스트에서 작성한 프로그램에 로그를 발생시키는 소스를 삽입하여 타겟 시스템에서 실행한다. 발생된 프로파일링 로그는 통신으로 호스트 시스템에 전송하고 전송한 로그 데이터는 호스트 시스템에서 분석하여 XML 형태로 저장하고 보고서를 생성한다. 보고서는 GUI 기반의 그래픽 뷰어를 통해 개발자에게 제공한다. 제안하는 도구는 자원이 적은 타겟 시스템의 로드를 줄이고 생성하는 로그 XML은 XSLT를 이용하여 다른 형태로 변환하기 용이하다. 또한 제안하는 도구는 이클립스 플러그인 기반으로 이클립스의 다양한 기능을 그대로 사용할 수 있는 장점을 가진다.
An important potential of metabolomics-based approach is the possibility to develop fingerprints of diseases or cellular responses to classes of compounds with known common biological effect. Such fingerprints have the potential to allow classification of disease states or compounds, to provide mechanistic information on cellular perturbations and pathways and to identify biomarkers specific for disease severity and drug efficacy. Metabolic profiles of biological fluids contain a vast array of endogenous metabolites. Changes in those profiles resulting from perturbations of the system can be observed using analytical techniques, such as NMR and MS. $^1H$ NMR was used to generate a molecular fingerprint of serum or urinary sample, and then pattern recognition technique was applied to identity molecular signatures associated with the specific diseases or drug efficiency. Several metabolites that differentiate disease samples from the control were thoroughly characterized by NMR spectroscopy. We investigated the metabolic changes in human normal and clinical samples using $^1H$ NMR. Spectral data were applied to targeted profiling and spectral binning method, and then multivariate statistical data analysis (MVDA) was used to examine in detail the modulation of small molecule candidate biomarkers. We show that targeted profiling produces robust models, generates accurate metabolite concentration data, and provides data that can be used to help understand metabolic differences between healthy and disease population. Such metabolic signatures could provide diagnostic markers for a disease state or biomarkers for drug response phenotypes.
가상기계(Virtual Machine)는 소프트웨어로 제작되어 논리적인 시스템 구성을 갖는 컴퓨터이기 때문에 그 수행 속도와 필요 저장 공간 측면에서 성능이 떨어질 수밖에 없다. 이러한 환경에서의 가상기계 코드 최적화는 실행 성능을 향상시킬 수 있기에 중요하다. 특별히 임베디드 장치(Embedded Device)에서 작동하는 가상기계 환경에서의 최적화는 기존의 최적화에 비해 수행 비용 대비 효과에서 높은 효율을 요구한다. 이에 따라 프로파일링을 통하여 성능에 크게 영향을 주는 함수 또는 기본 블록(Basic Block)을 찾아 최적화하는 것이 효과적이다. 본 논문에서는 프로파일링을 이용한 가상기계 코드 최적화기를 설계하고 구현하였다. 먼저, 가상기계 코드 최적화를 위해 코드를 실행하여 얻을 수 있는 동적 정보인 프로파일링 데이터(Profiling Data)를 정의하였고, 프로파일링 정보를 이용한 가상기계 코드 최적기를 구현하였다. 또한, 구현과 실험에 있어서 가상기계 코드는 EVM(Embedded Virtual Machine)의 중간 언어인 SIL(Standard Intermediate Language)를 사용하였고, 구현된 최적화기에 대한 실험을 통해 최적화기의 효과를 확인하였다.
Recent GPUs have adopted cache memory to benefit general-purpose GPU (GPGPU) programs. However, unlike CPU programs, GPGPU programs typically have considerably less temporal/spatial locality. Moreover, the L1 data cache is used by many threads that access a data size typically considerably larger than the L1 cache, making it critical to bypass L1 data cache intelligently to enhance GPU cache performance. In this paper, we examine GPU cache access behavior and propose a simple hardware-based GPU cache bypassing method that can be applied to GPU applications without recompiling programs. Moreover, we introduce a hybrid method that integrates static profiling information and hardware-based bypassing to further enhance performance. Our experimental results reveal that hardware-based cache bypassing can boost performance for most benchmarks, and the hybrid method can achieve performance comparable to state-of-the-art compiler-based bypassing with considerably less profiling cost.
This paper presents a profiling model of a wide-window superscalar microprocessor using multiple branch prediction. The key idea is to apply statistical profiling technique to the superscalar microprocessor with a wide instruction window and a multiple branch predictor. The statistical profiling data are used to obtain a synthetical instruction trace, and the consecutive multiple branch prediction rates are utilized for running trace-driven simulation on the synthesized instruction trace. We describe our design and evaluate it with the SPEC 2000 integer benchmarks. Our performance model can achieve accuracy of 8.5 % on the average.
산업 현장에서 발생하는 다양한 안전사고의 원인이 되는 위험 요소를 분석하여 사용자에게 발생하는 안전사고를 줄일 수 있는 지능형 기술 개발에 대한 필요성이 커지고 있다. 본 논문에서는 산업 현장에서 발생하는 안전사고와 관련된 사용자 정보를 특정하고 모델링하여 사용자에게 일어나는 안전 사고를 미리 예방할 수 있는 사용자 안전 프로파일링에 대한 기술을 제안하였다. 사용자 프로파일링은 사용자의 혈압, 맥박, 움직임 등의 정보로부터 사용자의 생체, 작업 패턴, 작업 유형에 대한 안전 상태를 정(positive)과 부(negative)로 특정 및 모델링하고 딥러닝 인공지능 분석기술을 이용하여 사용자의 안전 상태를 정상과 비정상 상태로 분류할 수 있도록 하였다. 제안된 기술의 타당성을 검증하기 위하여 산업 현장에서 근무하는 사용자 5명을 대상으로 10종 이상의 사용자 정보를 리빙랩에서 획득하여 지능형 분석 시스템을 학습한 후 5개의 테스트 셋을 이용하여 정확도 시험을 반복 시행하여 93.6%의 사용자 안전 프로파일링 시스템의 정확도를 얻을 수 있었다.
Purpose Corporate technology leakage is not only monetary loss, but also has a negative impact on the corporate image and further deteriorates sustainable growth. In particular, since SMEs are highly dependent on core technologies compared to large corporations, loss of technology leakage threatens corporate survival. Therefore, it is important for SMEs to "prevent and protect technology leakage". With the recent development of data analysis technology and the opening of public data, it has become possible to discover and proactively detect companies with a high probability of technology leakage based on actual company data. In this study, we try to construct profiles of enterprises with and without technology leakage experience through profiling analysis using data mining techniques. Furthermore, based on this, we propose a classification model that distinguishes companies that are likely to leak technology. Design/methodology/approach This study tries to develop the empirical model for prevention and protection of technology leakage through profiling method which analyzes each SME from the viewpoint of individual. Based on the previous research, we tried to classify many characteristics of SMEs into six categories and to identify the factors influencing the technology leakage of SMEs from the enterprise point of view. Specifically, we divided the 29 SME characteristics into the following six categories: 'firm characteristics', 'organizational characteristics', 'technical characteristics', 'relational characteristics', 'financial characteristics', and 'enterprise core competencies'. Each characteristic was extracted from the questionnaire data of 'Survey of Small and Medium Enterprises Technology' carried out annually by the Government of the Republic of Korea. Since the number of SMEs with experience of technology leakage in questionnaire data was significantly smaller than the other, we made a 1: 1 correspondence with each sample through mixed sampling. We conducted profiling of companies with and without technology leakage experience using decision-tree technique for research data, and derived meaningful variables that can distinguish the two. Then, empirical model for prevention and protection of technology leakage was developed through discriminant analysis and logistic regression analysis. Findings Profiling analysis shows that technology novelty, enterprise technology group, number of intellectual property registrations, product life cycle, technology development infrastructure level(absence of dedicated organization), enterprise core competency(design) and enterprise core competency(process design) help us find SME's technology leakage. We developed the two empirical model for prevention and protection of technology leakage in SMEs using discriminant analysis and logistic regression analysis, and each hit ratio is 65%(discriminant analysis) and 67%(logistic regression analysis).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.