• 제목/요약/키워드: data model

Search Result 47,168, Processing Time 0.077 seconds

Variation Analysis of Sea Surface Temperature in the East China Sea during Summer (동중국해에서 하계 표층수온의 변화 분석)

  • Park, GwangSeob;Lee, Taehee;Son, Young Baek
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.953-968
    • /
    • 2018
  • In order to understand the change of surface water temperature in the East China Sea (ECS), this study analyzed the relationship between sea surface temperature (SST), air temperature (AT) and heat flux using satellite and model reanalysis data from 2003 to 2017. SST in the ECS showed the lowest (average : $13.72^{\circ}C$) in March and the highest (average : $28.12^{\circ}C$) in August. AT is highly correlated with SST and shows a similar seasonal change. In August, SST is higher than AT and then continuously higher than AT until winter. To analyze the change of the summer SST in the ECS, we used the SST anomaly value in August to classify the periods with positive (04', 06', 07', 13', 16', 17') and negative (03', 05', 08', 09', 10', 11', 12', 14', 15') values. Spatial similarity between the two periods indicates that SSTs are relatively larger variations in the northern part than in the southern part, and in the western part than in the eastern part in the study area. AT and net heat flux values also show similar changes with SST. However, the periods of the positive SST anomaly have the relatively increasing SST, AT and heat flux values compared to the periods of the negative SST anomaly in the summer season of the ECS. Although the change of SST in the summer season generally well correlates with AT, there were the periods when it was different from general trends between SST and AT (10', 12', 15', 16'). SST in August 2010 and 2012 decreased by $0.5^{\circ}C$ from AT. It suggests that the decreasing SST was considered to be caused by the effects of the typhoon passing through the study area. In August 2015, AT was relatively lower than SST (> $0.5^{\circ}C$), which is might be weakening of the East Asian Summer Monsoon. In August 2016, SST and AT show the highest values during the whole study periods, but SST is higher than AT (> $1^{\circ}C$). From satellite and heat flux data, the variations of SST have been shown to be relatively higher in the area of the expansion Changjiang Diluted Water (CDW) originated from the China coast. More research is needed to analyze this phenomenon, it is believed as not only the effect of rising AT but also the expansion of the low-salinity water.

Development Process for User Needs-based Chatbot: Focusing on Design Thinking Methodology (사용자 니즈 기반의 챗봇 개발 프로세스: 디자인 사고방법론을 중심으로)

  • Kim, Museong;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.221-238
    • /
    • 2019
  • Recently, companies and public institutions have been actively introducing chatbot services in the field of customer counseling and response. The introduction of the chatbot service not only brings labor cost savings to companies and organizations, but also enables rapid communication with customers. Advances in data analytics and artificial intelligence are driving the growth of these chatbot services. The current chatbot can understand users' questions and offer the most appropriate answers to questions through machine learning and deep learning. The advancement of chatbot core technologies such as NLP, NLU, and NLG has made it possible to understand words, understand paragraphs, understand meanings, and understand emotions. For this reason, the value of chatbots continues to rise. However, technology-oriented chatbots can be inconsistent with what users want inherently, so chatbots need to be addressed in the area of the user experience, not just in the area of technology. The Fourth Industrial Revolution represents the importance of the User Experience as well as the advancement of artificial intelligence, big data, cloud, and IoT technologies. The development of IT technology and the importance of user experience have provided people with a variety of environments and changed lifestyles. This means that experiences in interactions with people, services(products) and the environment become very important. Therefore, it is time to develop a user needs-based services(products) that can provide new experiences and values to people. This study proposes a chatbot development process based on user needs by applying the design thinking approach, a representative methodology in the field of user experience, to chatbot development. The process proposed in this study consists of four steps. The first step is 'setting up knowledge domain' to set up the chatbot's expertise. Accumulating the information corresponding to the configured domain and deriving the insight is the second step, 'Knowledge accumulation and Insight identification'. The third step is 'Opportunity Development and Prototyping'. It is going to start full-scale development at this stage. Finally, the 'User Feedback' step is to receive feedback from users on the developed prototype. This creates a "user needs-based service (product)" that meets the process's objectives. Beginning with the fact gathering through user observation, Perform the process of abstraction to derive insights and explore opportunities. Next, it is expected to develop a chatbot that meets the user's needs through the process of materializing to structure the desired information and providing the function that fits the user's mental model. In this study, we present the actual construction examples for the domestic cosmetics market to confirm the effectiveness of the proposed process. The reason why it chose the domestic cosmetics market as its case is because it shows strong characteristics of users' experiences, so it can quickly understand responses from users. This study has a theoretical implication in that it proposed a new chatbot development process by incorporating the design thinking methodology into the chatbot development process. This research is different from the existing chatbot development research in that it focuses on user experience, not technology. It also has practical implications in that companies or institutions propose realistic methods that can be applied immediately. In particular, the process proposed in this study can be accessed and utilized by anyone, since 'user needs-based chatbots' can be developed even if they are not experts. This study suggests that further studies are needed because only one field of study was conducted. In addition to the cosmetics market, additional research should be conducted in various fields in which the user experience appears, such as the smart phone and the automotive market. Through this, it will be able to be reborn as a general process necessary for 'development of chatbots centered on user experience, not technology centered'.

Verification the Systems Thinking Factor Structure and Comparison of Systems Thinking Based on Preferred Subjects about Elementary School Students' (초등학생의 시스템 사고 요인 구조 검증과 선호 과목에 따른 시스템 사고 비교)

  • Lee, Hyonyong;Jeon, Jaedon;Lee, Hyundong
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.2
    • /
    • pp.161-171
    • /
    • 2019
  • The purposes of this study are: 1) to verify the systems thinking factor structure of elementary school students and 2) to compare systems thinking according to their preferred subjects in order to get implications for following research. For the study, pre-tests analyze data from 732 elementary school students using the STMI (Systems Thinking Measuring Instrument) developed by Lee et al. (2013). And exploratory factor analysis was conducted to identify the factor structure of the students. Based on the results of the pre-test, the expert group council revised the STMI so that elementary school students could respond to the 5-factor structure that STMI intended. In the post-test, 503 data were analyzed by modified STMI and exploratory factor analysis was performed. The results of the study are as follows: First, in the pre-test, elementary school students responded to the STMI with a test paper consisting of two factors (personal internal factors and personal external factors). The total reliability of the instrument was .932 and the reliability of each factor was analyzed as .857 and .894. Second, for modified STMI, elementary school students responded a 4-factor instrument. Team learning, Shared Vision, and Personal Mastery were derived independent factors, and mental model and systems analysis were derived 1-factor. The total reliability of the instrument was .886 and the reliability of each factor was analyzed as .686 to .864. Finally, a comparison of systems thinking according to preferred subjects showed a significant difference between students who selected science (engineering) group and art (music and physical education). In conclusion, it was confirmed that statistically meaningful results could be obtained using STMI modified by term and sentence structure appropriate for elementary school students, and it is a necessary to study the relation of systems thinking with various student variables such as the preferred subjects.

The Influence of Moral Distress and Moral Sensitivity on Moral Courage in Nursing Students (간호대학생의 도덕적 용기에 대한 도덕적 고뇌와 도덕적 민감성의 관계)

  • YUN, Hye-Young;KIM, Sun-Ki;JANG, Hyo-Eun;HWANG, Sin-Woo;KIM, Sang-Hee
    • Korean Journal of Medical Ethics
    • /
    • v.21 no.4
    • /
    • pp.360-376
    • /
    • 2018
  • Nursing students experience ethical conflicts that lead to moral distress and moral sensitivity in clinical practice. Most nursing students have some difficulty in speaking up when faced with morally challenging situations. Hence, increasing moral courage of these students is important to improve the quality of practice, and carry out nursing responsibilities. However, research on the moral distress, moral sensitivity, and moral courage of nursing students has not been reported in South Korea. The purposes of this study were to (a) identify the levels of moral distress, moral sensitivity, and moral courage of nursing students and (b) examine the influence of moral distress and moral sensitivity on moral courage. Data were collected through a survey using self-reported questionnaires sent to senior nursing students at two nursing colleges in Seoul and Gyeonggido. A total of 138 senior nursing students participated in the survey. The data were analyzed using the IBM SPSS Statistics 23 program by Pearson's correlation coefficients and multiple regression analysis. The mean scores of the moral distress thermometer, moral distress, moral sensitivity, and moral courage were $3.53{\pm}2.18$, $57.33{\pm}43.35$, $134.98{\pm}13.98$, and $56.33{\pm}12.75$, respectively. The significant factors influencing moral courage were the moral distress thermometer and patient-centered nursing, which was a subcomponent of moral sensitivity. The explanatory power of the model was 5%. This study confirms that nursing students, like nurses, experience moral distress. It is therefore important to create organizational environments that support the moral courage of nursing students.

Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)

  • Kim, Museong;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.175-197
    • /
    • 2021
  • Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.

Predicting the Pre-Harvest Sprouting Rate in Rice Using Machine Learning (기계학습을 이용한 벼 수발아율 예측)

  • Ban, Ho-Young;Jeong, Jae-Hyeok;Hwang, Woon-Ha;Lee, Hyeon-Seok;Yang, Seo-Yeong;Choi, Myong-Goo;Lee, Chung-Keun;Lee, Ji-U;Lee, Chae Young;Yun, Yeo-Tae;Han, Chae Min;Shin, Seo Ho;Lee, Seong-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.239-249
    • /
    • 2020
  • Rice flour varieties have been developed to replace wheat, and consumption of rice flour has been encouraged. damage related to pre-harvest sprouting was occurring due to a weather disaster during the ripening period. Thus, it is necessary to develop pre-harvest sprouting rate prediction system to minimize damage for pre-harvest sprouting. Rice cultivation experiments from 20 17 to 20 19 were conducted with three rice flour varieties at six regions in Gangwon-do, Chungcheongbuk-do, and Gyeongsangbuk-do. Survey components were the heading date and pre-harvest sprouting at the harvest date. The weather data were collected daily mean temperature, relative humidity, and rainfall using Automated Synoptic Observing System (ASOS) with the same region name. Gradient Boosting Machine (GBM) which is a machine learning model, was used to predict the pre-harvest sprouting rate, and the training input variables were mean temperature, relative humidity, and total rainfall. Also, the experiment for the period from days after the heading date (DAH) to the subsequent period (DA2H) was conducted to establish the period related to pre-harvest sprouting. The data were divided into training-set and vali-set for calibration of period related to pre-harvest sprouting, and test-set for validation. The result for training-set and vali-set showed the highest score for a period of 22 DAH and 24 DA2H. The result for test-set tended to overpredict pre-harvest sprouting rate on a section smaller than 3.0 %. However, the result showed a high prediction performance (R2=0.76). Therefore, it is expected that the pre-harvest sprouting rate could be able to easily predict with weather components for a specific period using machine learning.

A Study on the Influence of Workers' Aspiration for Academic Needs on Participation in University Education (근로자의 학업욕구 열망이 대학교육 참여에 미치는 영향에 관한 연구)

  • Lee, Ji-Hun;Mun, Bok-Hyun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.3
    • /
    • pp.231-241
    • /
    • 2021
  • This study intended to present strategies and implications for attracting new students and customized education to university officials through research on the participation of workers' academic aspirations in university education. Thus, variables were derived by analyzing prior data, and causal settings between variables and questionnaires were developed. Subject to the survey, 331 workers interested in participating in university education were collected through interpersonal interviews. The collected data were dataized, and reliability and feasibility verification and frequency analysis were conducted. Finally, we validate the fit of the structural equation model and the causal relationship for each concept. Therefore, the results of the validation show the following implications. First, university officials should be motivated by a mentor and mentee system with experienced people who have switched to a suitable vocational group through university education. It will also be necessary to develop and disseminate programs so that they can continue to develop themselves for the future. To this end, it will be necessary to help them understand their aptitude and strengths through consultation with experts. Second, university officials should strengthen public relations so that prospective students can know the cases and information of the job transformation of the admitted workers through recommendations. It will also be necessary to develop university education programs that can self-develop, accept various ideas through "public contest", and provide accurate information about university education to workers through re-processing. Third, university officials should provide workers with a program that allows them to catch two rabbits: job transformation and self-improvement through university education. In other words, it is necessary to stimulate the motivation of workers by providing various information such as visiting advanced overseas companies, obtaining various certificates, moving between departments of blue-collar and white-collar, and transfer opportunities. Fourth, university officials should actively promote university education programs related to this by participating in university education and receiving systematic education and the flow of social environment. Finally, university officials will need to consult and promote workers so that they can self-develop when they participate in college education, and they will have to figure out what they need for self-development through demand surveys and analysis.

Laboratory chamber test for prediction of hazardous ground conditions ahead of a TBM tunnel face using electrical resistivity survey (전기비저항 탐사 기반 TBM 터널 굴진면 전방 위험 지반 예측을 위한 실내 토조실험 연구)

  • Lee, JunHo;Kang, Minkyu;Lee, Hyobum;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.451-468
    • /
    • 2021
  • Predicting hazardous ground conditions ahead of a TBM (Tunnel Boring Machine) tunnel face is essential for efficient and stable TBM advance. Although there have been several studies on the electrical resistivity survey method for TBM tunnelling, sufficient experimental data considering TBM advance were not established yet. Therefore, in this study, the laboratory-scale model experiments for simulating TBM excavation were carried out to analyze the applicability of an electrical resistivity survey for predicting hazardous ground conditions ahead of a TBM tunnel face. The trend of electrical resistivity during TBM advance was experimentally evaluated under various hazardous ground conditions (fault zone, seawater intruded zone, soil to rock transition zone, and rock to soil transition zone) ahead of a tunnel face. In the course of the experiments, a scale-down rock ground was provided using granite blocks to simulate the rock TBM tunnelling. Based on the experimental data, the electrical resistivity tends to decrease as the tunnel approaches the fault zone. While the seawater intruded zone follows a similar trend with the fault zone, the resistivity value of the seawater intrude zone decreased significantly compared to that of the fault zone. In case of the soil-to-rock transition zone, the electrical resistivity increases as the TBM approaches the rock with relatively high electrical resistivity. Conversely, in case of the rock-to-soil transition zone, the opposite trend was observed. That is, electrical resistivity decreases as the tunnel face approaches the rock with relatively low electrical resistivity. The experiment results represent that hazardous ground conditions (fault zone, seawater intruded zone, soil-to-rock transition zone, rock-to-soil transition zone) can be efficiently predicted by utilizing an electrical resistivity survey during TBM tunnelling.

Understanding Public Opinion by Analyzing Twitter Posts Related to Real Estate Policy (부동산 정책 관련 트위터 게시물 분석을 통한 대중 여론 이해)

  • Kim, Kyuli;Oh, Chanhee;Zhu, Yongjun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.56 no.3
    • /
    • pp.47-72
    • /
    • 2022
  • This study aims to understand the trends of subjects related to real estate policies and public's emotional opinion on the policies. Two keywords related to real estate policies such as "real estate policy" and "real estate measure" were used to collect tweets created from February 25, 2008 to August 31, 2021. A total of 91,740 tweets were collected and we applied sentiment analysis and dynamic topic modeling to the final preprocessed and categorized data of 18,925 tweets. Sentiment analysis and dynamic topic model analysis were conducted for a total of 18,925 posts after preprocessing data and categorizing them into supply, real estate tax, interest rate, and population variance. Keywords of each category are as follows: the supply categories (rental housing, greenbelt, newlyweds, homeless, supply, reconstruction, sale), real estate tax categories (comprehensive real estate tax, acquisition tax, holding tax, multiple homeowners, speculation), interest rate categories (interest rate), and population variance categories (Sejong, new city). The results of the sentiment analysis showed that one person posted on average one or two positive tweets whereas in the case of negative and neutral tweets, one person posted two or three. In addition, we found that part of people have both positive as well as negative and neutral opinions towards real estate policies. As the results of dynamic topic modeling analysis, negative reactions to real estate speculative forces and unearned income were identified as major negative topics and as for positive topics, expectation on increasing supply of housing and benefits for homeless people who purchase houses were identified. Unlike previous studies, which focused on changes and evaluations of specific real estate policies, this study has academic significance in that it collected posts from Twitter, one of the social media platforms, used emotional analysis, dynamic topic modeling analysis, and identified potential topics and trends of real estate policy over time. The results of the study can help create new policies that take public opinion on real estate policies into consideration.

A Study on the Potential Use of ChatGPT in Public Design Policy Decision-Making (공공디자인 정책 결정에 ChatGPT의 활용 가능성에 관한연구)

  • Son, Dong Joo;Yoon, Myeong Han
    • Journal of Service Research and Studies
    • /
    • v.13 no.3
    • /
    • pp.172-189
    • /
    • 2023
  • This study investigated the potential contribution of ChatGPT, a massive language and information model, in the decision-making process of public design policies, focusing on the characteristics inherent to public design. Public design utilizes the principles and approaches of design to address societal issues and aims to improve public services. In order to formulate public design policies and plans, it is essential to base them on extensive data, including the general status of the area, population demographics, infrastructure, resources, safety, existing policies, legal regulations, landscape, spatial conditions, current state of public design, and regional issues. Therefore, public design is a field of design research that encompasses a vast amount of data and language. Considering the rapid advancements in artificial intelligence technology and the significance of public design, this study aims to explore how massive language and information models like ChatGPT can contribute to public design policies. Alongside, we reviewed the concepts and principles of public design, its role in policy development and implementation, and examined the overview and features of ChatGPT, including its application cases and preceding research to determine its utility in the decision-making process of public design policies. The study found that ChatGPT could offer substantial language information during the formulation of public design policies and assist in decision-making. In particular, ChatGPT proved useful in providing various perspectives and swiftly supplying information necessary for policy decisions. Additionally, the trend of utilizing artificial intelligence in government policy development was confirmed through various studies. However, the usage of ChatGPT also unveiled ethical, legal, and personal privacy issues. Notably, ethical dilemmas were raised, along with issues related to bias and fairness. To practically apply ChatGPT in the decision-making process of public design policies, first, it is necessary to enhance the capacities of policy developers and public design experts to a certain extent. Second, it is advisable to create a provisional regulation named 'Ordinance on the Use of AI in Policy' to continuously refine the utilization until legal adjustments are made. Currently, implementing these two strategies is deemed necessary. Consequently, employing massive language and information models like ChatGPT in the public design field, which harbors a vast amount of language, holds substantial value.