• Title/Summary/Keyword: data mining techniques

Search Result 922, Processing Time 0.026 seconds

Design of Manufacturing Data Analysis System using Data Mining Techniques (데이터마이닝 기법을 이용한 생산데이터 분석시스템 설계)

  • Lee H.W.;Lee G.A.;Choi S.;Park H.K.;Bae S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.611-612
    • /
    • 2006
  • Many data mining techniques have been proved useful in revealing important patterns from large data sets. Especially, data mining techniques play an important role in a customer data analysis in a financial industry and an electronic commerce. Also, there are many data mining related research papers in a semiconductor industry and an automotive industry. In addition, data mining techniques are applied to the bioinformatics area. To satisfy customers' various requirements, each industry should develop new processes with more accurate production criteria. Also, they spend more money to guarantee their products' quality. In this manner, we apply data mining techniques to the production-related data such as a test data, a field claim data, and POP (point of production) data in the automotive parts industry. Data collection and transformation techniques should be applied to enhance the analysis results. Also, we classify various types of manufacturing processes and proposed an analysis scheme according to the type of manufacturing process. As a result, we could find inter- or intra-process relationships and critical features to monitor the current status of the each process. Finally, it helps an industry to raise their profit and reduce their failure cost.

  • PDF

Enhanced Hybrid Privacy Preserving Data Mining Technique

  • Kundeti Naga Prasanthi;M V P Chandra Sekhara Rao;Ch Sudha Sree;P Seshu Babu
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.99-106
    • /
    • 2023
  • Now a days, large volumes of data is accumulating in every field due to increase in capacity of storage devices. These large volumes of data can be applied with data mining for finding useful patterns which can be used for business growth, improving services, improving health conditions etc. Data from different sources can be combined before applying data mining. The data thus gathered can be misused for identity theft, fake credit/debit card transactions, etc. To overcome this, data mining techniques which provide privacy are required. There are several privacy preserving data mining techniques available in literature like randomization, perturbation, anonymization etc. This paper proposes an Enhanced Hybrid Privacy Preserving Data Mining(EHPPDM) technique. The proposed technique provides more privacy of data than existing techniques while providing better classification accuracy. The experimental results show that classification accuracies have increased using EHPPDM technique.

Artificial Intelligence and Pattern Recognition Using Data Mining Algorithms

  • Al-Shamiri, Abdulkawi Yahya Radman
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.221-232
    • /
    • 2021
  • In recent years, with the existence of huge amounts of data stored in huge databases, the need for developing accurate tools for analyzing data and extracting information and knowledge from the huge and multi-source databases have been increased. Hence, new and modern techniques have emerged that will contribute to the development of all other sciences. Knowledge discovery techniques are among these technologies, one popular technique of knowledge discovery techniques is data mining which aims to knowledge discovery from huge amounts of data. Such modern technologies of knowledge discovery will contribute to the development of all other fields. Data mining is important, interesting technique, and has many different and varied algorithms; Therefore, this paper aims to present overview of data mining, and clarify the most important of those algorithms and their uses.

Analyzing Production Data using Data Mining Techniques (데이터마이닝 기법의 생산공정데이터에의 적용)

  • Lee H.W.;Lee G.A.;Choi S.;Bae K.W.;Bae S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.143-146
    • /
    • 2005
  • Many data mining techniques have been proved useful in revealing important patterns from large data sets. Especially, data mining techniques play an important role in a customer data analysis in a financial industry and an electronic commerce. Also, there are many data mining related research papers in a semiconductor industry and an automotive industry. In addition, data mining techniques are applied to the bioinformatics area. To satisfy customers' various requirements, each industry should develop new processes with more accurate production criteria. Also, they spend more money to guarantee their products' quality. In this manner, we apply data mining techniques to the production-related data such as a test data, a field claim data, and POP (point of production) data in the automotive parts industry. Data collection and transformation techniques should be applied to enhance the analysis results. Also, we classify various types of manufacturing processes and proposed an analysis scheme according to the type of manufacturing process. As a result, we could find inter- or intra-process relationships and critical features to monitor the current status of the each process. Finally, it helps an industry to raise their profit and reduce their failure cost.

  • PDF

Current Status and Trend of Data Mining Techniques (데이터 마이닝 기법의 현황 및 추세)

  • 오승준;송영덕;오민근
    • KSCI Review
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2001
  • Recent times have seen an explosive growth in the availability of various kinds of data. It has resulted in an unprecedented opportunity to develop automated data-driven techniques of extracting useful knowledge. Data mining. an important step in this process of knowledge discovery consists of methods that discover interesting. non-trivial and useful Patterns hidden in the data In this paper. we surveyed data mining techniques. We find effective data mining techniques in applying real world. and suggest appropriate application area for the each techniques. We conclude the Paper with some research issues.

  • PDF

Development of Scoring Model on Customer Attrition Probability by Using Data Mining Techniques

  • Han, Sang-Tae;Lee, Seong-Keon;Kang, Hyun-Cheol;Ryu, Dong-Kyun
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.271-280
    • /
    • 2002
  • Recently, many companies have applied data mining techniques to promote competitive power in the field of their business market. In this study, we address how data mining, that is a technique to enable to discover knowledge from a deluge of data, Is used in an executed project in order to support decision making of an enterprise. Also, we develope scoring model on customer attrition probability for automobile-insurance company using data mining techniques. The development of scoring model in domestic insurance is given as an example concretely.

Applications of Data Mining Techniques to Operations Planning for Real Time Order Confirmation (실시간 주문 확답을 위한 데이터 마이닝 기반 운용 계획 모델)

  • Han Hyun-Soo;Oh Dong-Ha
    • Korean Management Science Review
    • /
    • v.21 no.3
    • /
    • pp.101-113
    • /
    • 2004
  • In the rapidly propagating Internet based electronic transaction environment. the importance of real time order confirmation has been more emphasized, In this paper, using data mining techniques, we develop intelligent operations decision model to allow real time order confirmation at the time the customer places an order with required delivery terms. Among various operation plannings used for order fulfillment. mill routing is the first interface decision point to link the order receiving at the marketing with the production planning for order fulfillment. Though linear programming based mathematical optimization techniques are mostly used for mill routing problems, some early orders should wait until sufficient orders are gathered for optimization. And that could effect longer order fulfillment lead-time, and prevent instant order confirmation of delivery terms. To cope with this problem, we provide the intelligent decision model to allow instant order based mill routing decisions. Data mining techniques of decision trees and neural networks. which are more popular in marketing and financial applications, are used to develop the model. Through diverse computational trials with the industrial data from the steel company. we have reported that the performance of the proposed approach is effective compared to the present heuristic only mill routing results. Various issues of data mining techniques application to the mill routing problems having linear programming characteristics are also discussed.

SENSOR DATA MINING TECHNIQUES AND MIDDLEWARE STRUCTURE FOR USN ENVIRONMENT

  • Jin, Cheng-Hao;Lee, Yong-Mi;Kim, Hi-Seok;Pok, Gou-Chol;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.353-356
    • /
    • 2007
  • With advances in sensor technology, current researches on the pertinent techniques are actively directed toward the way which enables the USN computing service. For many applications using sensor networks, the incoming data are by nature characterized as high-speed, continuous, real-time and infinite. Due to such uniqueness of sensor data characteristics, for some instances a finite-sized buffer may not accommodate the entire incoming data, which leads to inevitable loss of data, and requirement for fast processing makes it impossible to conduct a thorough investigation of data. In addition to the potential problem of loss of data, incoming data in its raw form may exhibit high degree of complexity which evades simple query or alerting services for capturing and extracting useful information. Furthermore, as traditional mining techniques are developed to handle fixed, static historical data, they are not useful and directly applicable for analyzing the sensor data. In this paper, (1) describe how three mining techniques (sensor data outlier analysis, sensor pattern analysis, and sensor data prediction analysis) are appropriate for the USN middleware structure, with their application to the stream data in ocean environment. (2) Another proposal is a middleware structure based on USN environment adaptive to above mining techniques. This middleware structure includes sensor nodes, sensor network common interface, sensor data processor, sensor query processor, database, sensor data mining engine, user interface and so on.

  • PDF

A Study of Data Mining Techniques in Bankruptcy Prediction (데이터 마이닝 기법의 기업도산예측 실증분석)

  • Lee, Kidong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.2
    • /
    • pp.105-127
    • /
    • 2003
  • In this paper, four different data mining techniques, two neural networks and two statistical modeling techniques, are compared in terms of prediction accuracy in the context of bankruptcy prediction. In business setting, how to accurately detect the condition of a firm has been an important event in the literature. In neural networks, Backpropagation (BP) network and the Kohonen self-organizing feature map, are selected and compared each other while in statistical modeling techniques, discriminant analysis and logistic regression are also performed to provide performance benchmarks for the neural network experiment. The findings suggest that the BP network is a better choice among the data mining tools compared. This paper also identified some distinctive characteristics of Kohonen self-organizing feature map.

Using Data Mining Techniques to Predict Win-Loss in Korean Professional Baseball Games (데이터마이닝을 활용한 한국프로야구 승패예측모형 수립에 관한 연구)

  • Oh, Younhak;Kim, Han;Yun, Jaesub;Lee, Jong-Seok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.1
    • /
    • pp.8-17
    • /
    • 2014
  • In this research, we employed various data mining techniques to build predictive models for win-loss prediction in Korean professional baseball games. The historical data containing information about players and teams was obtained from the official materials that are provided by the KBO website. Using the collected raw data, we additionally prepared two more types of dataset, which are in ratio and binary format respectively. Dividing away-team's records by the records of the corresponding home-team generated the ratio dataset, while the binary dataset was obtained by comparing the record values. We applied seven classification techniques to three (raw, ratio, and binary) datasets. The employed data mining techniques are decision tree, random forest, logistic regression, neural network, support vector machine, linear discriminant analysis, and quadratic discriminant analysis. Among 21(= 3 datasets${\times}$7 techniques) prediction scenarios, the most accurate model was obtained from the random forest technique based on the binary dataset, which prediction accuracy was 84.14%. It was also observed that using the ratio and the binary dataset helped to build better prediction models than using the raw data. From the capability of variable selection in decision tree, random forest, and stepwise logistic regression, we found that annual salary, earned run, strikeout, pitcher's winning percentage, and four balls are important winning factors of a game. This research is distinct from existing studies in that we used three different types of data and various data mining techniques for win-loss prediction in Korean professional baseball games.