• 제목/요약/키워드: data factorization

검색결과 123건 처리시간 0.02초

GPGPU의 멀티 쓰레드를 활용한 고성능 병렬 LU 분해 프로그램의 구현 (Implementation of high performance parallel LU factorization program for multi-threads on GPGPUs)

  • 신봉희;김영태
    • 인터넷정보학회논문지
    • /
    • 제12권3호
    • /
    • pp.131-137
    • /
    • 2011
  • GPGPU는 원래 그래픽 계산을 위한 프로세서인 GPU를 일반 계산에 활용하여 저전력으로 고성능의 효율을 보이는 신개념의 계산 장치이다. 본 논문에서는 GPGPU에서 계산을 하기 위한 병렬 LU 분해법의 알고리즘을 제안하였다. Nvidia GPGPU에서 프로그램을 실행하기 위한 CUDA 계산 환경에서는 계산하고자 하는 데이터 도메인을 블록으로 나누고 각 블록을 쓰레드들이 동시에 계산을 하는데, 이 때 블록들의 계산 순서는 무작위로 진행이 되기 때문에 블록간의 데이터 의존성을 가지는 LU 분해 프로그램에서는 결과가 정확하지 않게 된다. 본 논문에서는 병렬 LU 분해법에서 블록간의 계산 순서를 인위적으로 정하는 구현 방식을 제안하며 아울러 LU 분해법의 부분 피벗팅을 계산하기 위한 병렬 reduction 알고리즘도 제안한다. 또한 구현된 병렬프로그램의 성능 분석을 통하여 GPGPU의 멀티 쓰레드 기반으로 고성능으로 계산할 수 있는 병렬프로그램의 효율성을 보인다.

Stiefel 다양체에서 곱셈의 업데이트를 이용한 비음수 행렬의 직교 분해 (Orthogonal Nonnegative Matrix Factorization: Multiplicative Updates on Stiefel Manifolds)

  • 유지호;최승진
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권5호
    • /
    • pp.347-352
    • /
    • 2009
  • 주어진 비음수 데이터를 두 개의 비음수 행렬의 곱의 형태로 표현하는 비음수 행렬 분해(Nonnegative Matrix Factorization)는 비음수 데이터의 다변량 분석에서 폭넓게 사용되고 있는 방법이다. 비음수 행렬 분해는 집단화(Clustering), 특히 문서의 집단화에서 유용하게 쓰일 수 있다. 본 논문에서는 주어진 문서들로부터 구성된 단어-문서 행렬을 두 개의 비음수 행렬의 곱으로 분해할 때, 그 중 하나의 행렬에 직교 제한을 주는 비음수 행렬의 직교 분해(Orthogonal Nonnegative Matrix Factorization) 방법을 다룬다. 현존하는 비음수 행렬의 직교 분해 방법은 직교 제한과 관련된 항을 더해주는 방식을 사용하지만, 여기서는 Stiefel 다양체 위에서의 실제 기울기를 직접 구하여 곱셈의 업데이트 알고리즘을 유도하였다. 다양한 문서 데이터에 대한 실험을 통해 새롭게 유도된 비음수 행렬의 직교 분해 방법이 기존의 비음수 행렬 분해나 기존의 비음수 행렬의 직교 분해보다 문서 집단화에서 우수한 성능을 나타냄을 보였다.

Copyright Protection of E-books by Data Hiding Based on Integer Factorization

  • Wu, Da-Chun;Hsieh, Ping-Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권9호
    • /
    • pp.3421-3443
    • /
    • 2021
  • A data hiding method based on integer factorization via e-books in the EPUB format with XHTML and CSS files for copyright protection is proposed. Firstly, a fixed number m of leading bits in a message are transformed into an integer which is then factorized to yield k results. One of the k factorizations is chosen according to the decimal value of a number n of the subsequent message bits with n being decided as the binary logarithm of k. Next, the chosen factorization, denoted as a × b, is utilized to create a combined use of the

    and elements in the XHTML files to embed the m + n message bits by including into the two elements a class selector named according to the value of a as well as a text segment with b characters. The class selector is created by the use of a CSS pseudo-element. The resulting web pages are of no visual difference from the original, achieving a steganographic effect. The security of the embedded message is also considered by randomizing the message bits before they are embedded. Good experimental results and comparisons with exiting methods show the feasibility of the proposed method for copyright protection of e-books.

Factorization Machine을 이용한 추천 시스템 설계 (A Recommender System Using Factorization Machine)

  • 정승윤;김형중
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권4호
    • /
    • pp.707-712
    • /
    • 2017
  • 데이터의 양이 기하급수적으로 증가함에 따라 추천 시스템(recommender system)은 영화, 도서, 음악 등 다양한 산업에서 관심을 받고 있고 연구 대상이 되고 있다. 추천시스템은 사용자들의 과거 선호도 및 클릭스트림(click stream)을 바탕으로 사용자에게 적절한 아이템을 제안하는 것을 목적으로 한다. 대표적인 예로 넷플릭스의 영화 추천 시스템, 아마존의 도서 추천 시스템 등이 있다. 기존의 선행 연구는 협업적 여과, 내용 기반 추천, 혼합 방식의 3가지 방식으로 크게 분류할 수 있다. 하지만 기존의 추천 시스템은 희소성(sparsity), 콜드스타트(cold start), 확장성(scalability) 문제 등의 단점들이 있다. 이러한 단점들을 개선하고 보다 정확도가 높은 추천 시스템을 개발하기 위해 실제 온라인 기업의 상품구매 데이터를 이용해 factorization machine으로 추천시스템을 설계했다.

In-depth Recommendation Model Based on Self-Attention Factorization

  • Hongshuang Ma;Qicheng Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권3호
    • /
    • pp.721-739
    • /
    • 2023
  • Rating prediction is an important issue in recommender systems, and its accuracy affects the experience of the user and the revenue of the company. Traditional recommender systems use Factorization Machinesfor rating predictions and each feature is selected with the same weight. Thus, there are problems with inaccurate ratings and limited data representation. This study proposes a deep recommendation model based on self-attention Factorization (SAFMR) to solve these problems. This model uses Convolutional Neural Networks to extract features from user and item reviews. The obtained features are fed into self-attention mechanism Factorization Machines, where the self-attention network automatically learns the dependencies of the features and distinguishes the weights of the different features, thereby reducing the prediction error. The model was experimentally evaluated using six classes of dataset. We compared MSE, NDCG and time for several real datasets. The experiment demonstrated that the SAFMR model achieved excellent rating prediction results and recommendation correlations, thereby verifying the effectiveness of the model.

연판정 Reed-Solomon 리스트 디코딩의 Factorization을 위한 효율적인 VLSI 구조 (Efficient VLSI Architecture for Factorization in Soft-Decision Reed-Solomon List Decoding)

  • 이성만;박태근
    • 대한전자공학회논문지SD
    • /
    • 제47권11호
    • /
    • pp.54-64
    • /
    • 2010
  • Reed-Solomon(RS) 코드는 강력한 에러 정정 능력으로 널리 사용된다. 최근 Sudan에 의해 Reed-Solomon 코드의 리스트 디코딩 알고리즘이 정립되었다. 리스트 디코더는 일반적인 디코더보다 더 큰 디코딩 반경을 가지며 하나 이상의 코드를 찾아낸다. 리스트 디코더는 복잡도와 latency가 매우 큰 Interpolation 과 Factorization 단계를 포함하므로 효율적인 하드웨어 설계가 필요하다. Factorization 은 latency가 매 단계마다 변하는 특성을 가져 복잡도가 높으며, 하드웨어 효율 저하의 문제가 발생한다. 본 논문에서는 하드웨어의 재사용을 높인 구조와 알고리즘의 효율적인 처리 스케쥴을 제안한다. 제안한 구조는 각 단계를 작은 단위의 R-MAC 유닛으로 나누어 매 단계마다 하드웨어를 재구성하여 처리함으로서 높은 하드웨어 효율과 효율적인 메모리 구조를 통해 복잡도가 낮은 순차처리를 적용하면서도 높은 처리량을 보이며, 여러 가지 어플리케이션에 적용가능하다. 제안한 구조는 동부 아남 $0.18{\mu}m$ 표준 셀 라이브러리를 사용하여 합성한 결과 최대 동작 주파수는 330MHz이다.

Paper Recommendation Using SPECTER with Low-Rank and Sparse Matrix Factorization

  • Panpan Guo;Gang Zhou;Jicang Lu;Zhufeng Li;Taojie Zhu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권5호
    • /
    • pp.1163-1185
    • /
    • 2024
  • With the sharp increase in the volume of literature data, researchers must spend considerable time and energy locating desired papers. A paper recommendation is the means necessary to solve this problem. Unfortunately, the large amount of data combined with sparsity makes personalizing papers challenging. Traditional matrix decomposition models have cold-start issues. Most overlook the importance of information and fail to consider the introduction of noise when using side information, resulting in unsatisfactory recommendations. This study proposes a paper recommendation method (PR-SLSMF) using document-level representation learning with citation-informed transformers (SPECTER) and low-rank and sparse matrix factorization; it uses SPECTER to learn paper content representation. The model calculates the similarity between papers and constructs a weighted heterogeneous information network (HIN), including citation and content similarity information. This method combines the LSMF method with HIN, effectively alleviating data sparsity and cold-start issues and avoiding topic drift. We validated the effectiveness of this method on two real datasets and the necessity of adding side information.

단일 대상의 fMRI 데이터에서 제약적 교차 최소 제곱 비음수 행렬 분해 알고리즘에 의한 활성화 뇌 영역 검출 (Detecting Active Brain Regions by a Constrained Alternating Least Squares Nonnegative Matrix Factorization Algorithm from Single Subject's fMRI Data)

  • ;이종환;이성환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
    • /
    • pp.393-396
    • /
    • 2011
  • In this paper, we propose a constrained alternating least squares nonnegative matrix factorization algorithm (cALSNMF) to detect active brain regions from single subject's task-related fMRI data. In cALSNMF, we define a new cost function which considers the uncorrelation and noisy problems of fMRI data by adding decorrelation and smoothing constraints in original Euclidean distance cost function. We also generate a novel training procedure by modifying the update rules and combining with optimal brain surgeon (OBS) algorithm. The experimental results on visuomotor task fMRI data show that our cALSNMF fits fMRI data better than original ALSNMF in detecting task-related brain activation from single subject's fMRI data.

연속적인 뇌파 분류를 위한 비음수 텐서 분해 (Nonnegative Tensor Factorization for Continuous EEG Classification)

  • 이혜경;김용덕;;최승진
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권5호
    • /
    • pp.497-501
    • /
    • 2008
  • 본 논문에서는 연속적인 뇌파 분류를 위해 비음수 텐서 분해를 이용한 특징 추출과 비터비 알고리즘을 이용한 연속적인 데이타의 클래스 분류를 결합한 새로운 알고리즘을 제시한다. 비음수 텐서 분해는 이미 스펙트럼 데이타에 대해 뇌파의 주요한 특징을 잘 추출한다고 알려진 비음수 행렬 분해의 확장으로써 행렬이라는 제한된 틀에서 벗어나 데이타가 가지는 다양한 차원으로의 확대가 가능하다. 뇌-컴퓨터 인터페이스 컴피티션을 통해 공개된 데이터를 이용한 실험을 통해 제안된 방법의 유용함을 증명하도록 하겠다.

빔공간-영역 다채널 비음수 행렬 분해 알고리즘을 이용한 음원 분리 기법 Part I: 빔공간-영역 다채널 비음수 행렬 분해 시스템 (Audio Source Separation Method Based on Beamspace-domain Multichannel Non-negative Matrix Factorization, Part I: Beamspace-domain Multichannel Non-negative Matrix Factorization system)

  • 이석진;박상하;성굉모
    • 한국음향학회지
    • /
    • 제31권5호
    • /
    • pp.317-331
    • /
    • 2012
  • 본 논문에서는 다채널 음향 신호의 음원 분리를 수행하기 위하여, 빔공간-영역에서 다채널 비음수 행렬 분해 기법을 이용하는 음원 분리 시스템을 제안한다. 비음수 행렬 분해(NMF) 기법은 음원 분리에서 최근 널리 쓰이는 알고리즘이며, 특히 최근에는 다채널 비음수 행렬 분해(MC-NMF) 기법으로 발전하여 다채널 음향 신호에 대해서 적용되고 있다. 본 논문에서 제안하는 다채널 비음수 행렬 분해 기법은 빔공간-영역에서 수행되어, 기존의 다채널 비음수 행렬 분해 기법에 비해 좋은 성능을 가진다. 제안되는 비음수 행렬 분해 기법은 SiSEC 2010의 데이터셋을 이용하여 검증되었다.