연구목적: 이 연구는 최근 급증하고 있는 신종 마약류에 대하여 살펴보고, 이를 근절할 수 있는 대응방안을 제시하기 위한 목적의 연구이다. 연구방법:연구의 목적을 달성하기 위하여 관련 분야의 선행연구 및 통계, 해외 자료 등을 이용하여 신종 마약류에 대한 문제점을 파악하고 대응방안을 제시하고자 한다. 연구결과: 과거에 비해 국내로 마약류 투약·유통·제조하는 마약류 범죄자의 적발 사례가 급격하게 증하고 있는 모습을 보이고 있다. 2021년 마약류 관련 통계자료를 살펴보면, 2021년에는 전년대비 감소하는 모습을 보였으나, 적발되는 마약량은 세배 이상 증가한 모습을 보이고 있으며, 외국인 마약사범이 급벽하게 증가하고 있고, 마약류 사범의 연령대가 감소하는 우려스러운 모습을 보여주었다. 이러한 결과는 신종 마약류 확산이 크게 영향을 끼치고 있는데, 특히 펜타닐과, 야바, 까뜨, 크라톰 등과 같은 신종마약류의 확산과 새로운 향정신성의 의약품 및 대마관련 물품의 영향이라고 보여진다. 결론: 신종마약류의 확산에 따라 임시마약류 지정방식을 간소화하고 외국인 마약사범의 단속을 확대하고, 관세청 및 식약청 등 관련 기관과의 협력을 강화함과 동시에 마약사범에 대한 강력한 처벌을 통하여 신종마약류에 대한 대응을 강화하는 방안을 제안해 본다.
본 연구는 국가산림자원조사 자료를 활용하여 피나무림의 임지생산력지수와 수확예측모델을 도출하기 위하여 수행되었다. 피나무의 임지생산력을 알 수 있는 지위지수는 Schumacher 모델로서 파라미터를 도출하였으며, 이 결과로서 지위지수분류곡선도를 작성하였다. 국내 피나무림 지위지수 분포는 8~16 범위에 있는 것으로 나타났다. 임령을 설명변수로하여 흉고직경과 수고를 추정하는 생장모델은 Chapman-Richards 모델과 Weibull 모델을 이용하여 각각 도출하였다. 추정 모델의 적합도는 각각 0.32, 0.11로 나타나 일반적으로 볼 때 낮은 값이었으나, 추정식의 잔차가 "0"을 중심으로 고르게 분포하여 식을 적용하는데는 문제가 없을 것으로 판단되었다. 피나무림의 임분축적 변화에는 흉고단면적과 지위지수가 가장 큰 영향을 미치는 것으로 나타났다. 이 두 가지 인자를 적용시켜 피나무림의 수확모델을 도출하였으며, 모델에 대한 설명력은 약 94%로 높게 나타났다. 그리고 이들 수확모델의 잔차에 대한 정규성 및 자기상관 등에 대해서도 검증한 결과 문제가 없는 것으로 나타났다. 최종적으로 피나무림의 생장모델과 수확모델을 이용하여 임시로 활용할 수 있는 임분수확표를 제작하였으며, 이 자료에 의하면 피나무림이 70년생이 될 때, ha당 축적은 약 208 m3 이 될 것으로 예측되었다. 본 연구의 결과가 밀원자원 및 목재로서 활용가치가 높은 피나무림에 대한 경영의사결정에 도움이 되기를 기대한다.
Background: Despite the fact that aquatic exercise is one of the most popular alternative treatment methods for children with cerebral palsy (CP), there are few research regarding its effectiveness. Objects: The purpose of this study was to examine the effects of aquatic exercise on upper extremity function and postural control during reaching in children with CP. Methods: Ten participants (eight males and two females; 4-10 years; Gross Motor Function Classification System levels II-IV) with spastic diplegia were recruited to this study. The aquatic exercise program consisted of four modified movements that were selected from the Halliwick 10-point program to enhance upper extremity and trunk movements. The participants attended treatment two times a week for 6 weeks, averaging 35 minutes each session. The Box and Block Test (BBT), transferring pennies in the Bruininks-Oseretsky Test (BOT), and pediatric reaching test (PRT) scores were used as clinical measures. Three-dimensional motion analysis system was used to collect and analyze kinematic data. Differences in BBT and BOT values among pre-treatment, post-treatment, and retention (after 3 weeks) were analyzed using a Friedman test. In addition, the PRT scores and variables (movement time, hand velocity, straightness ratio, and number of movement units) from the three-dimensional motion analysis were tested using a Wilcoxon signed-rank test. The significance level was established at p < 0.05. When the results appeared to be statistically significant, a post-hoc test for multiple comparisons was performed with the Wilcoxon signed-rank test. Results: All clinical measures, which included BBT, transferring pennies of BOT, and PRT, were significantly increased between pre-intervention and post-intervention scores and between pre-intervention and retention scores after treatment (p = 0.001). Three-dimensional motion analysis mostly were significantly improved after treatment (p = 0.001). Conclusion: Aquatic exercise may help to improve body function, activity, and participation in children with varying types of physical disabilities.
AI 기술이 결합된 지능형 제품은 기술적 차별화를 실현하며 시장 경쟁력을 높일 수 있는 잠재성을 지닌다. 하지만 시장 수용도를 극대화 할 수 있는 AI 기반의 신제품 개발 방법론은 부재하다. 본 연구는 AI 기반의 지능형 제품 개발에 대한 방법론으로서 KANO-QFD 통합 모델을 제안한다. 실증적인 분석을 위한 구체적 사례로 탈모 예측 및 치료 기기에 대한 소비자 요구조건(Customer Requirements)의 유형을 분류하고, 이를 구현하기 위한 기술적 요구사항(Engineering Characteristics)의 상대적 중요도 및 우선순위를 도출하여 지능형 메디컬 신제품 개발의 방향을 제시하였다. 소비자 130명을 대상으로 실시한 설문조사 분석 결과, KANO 카테고리 중 매력적 품질(Attractive Quality) 요소로 미래 탈모 진행 상황에 대한 정확한 예측, 미래 탈모 모습 및 치료 후 개선된 미래 모습을 실물화하여 스마트폰으로 보고, 세련된 디자인, 레이저와 LED 빛 복합 에너지를 이용한 치료 등이 도출되었다. QFD의 품질의 집(House of Quality)을 기반으로 분석한 결과, 탈모 진단 및 예측을 위한 학습 데이터, 두피 스캔용 Micro 카메라 해상도, 탈모 유형 분류 모델, 맞춤화를 위한 개인별 계정 관리, 탈모 진행상황 진단 모델 순으로 상대적 중요도 및 우선순위가 도출되었다. 본 연구는 기존에 선행되지 않았던 AI 기반의 지능형 메디컬 제품 개발에 대한 방향을 제시하였다는 면에서 의의를 지닌다.
의류산업은 대표적인 노동집약적인 산업 중 하나로 의류 제조의 기본 공정인 봉제 작업은 인력에 대한 의존도가 매우 높다. 의류 생산비용은 라인의 효율성에서 큰 영향을 받는데, 생산비용의 절감을 위해서는 생산 속도를 조절하여 라인의 균형 유지하는 것이 중요하다. 그러나, 현재 의류 생산라인에서 활용되고 있는 인력에 의한 생산 실적 집계 방식은 이를 위한 부수적인 인력의 소요 등으로 인한 추가 비용이 소요되어 중소기업들이 직접 적용하기 쉽지 않다. 완제품의 인력에 대한 의존도는 집계 시간의 추가 소요와 인적 오류가 크게 잠재되어 생산비용의 증가와 함께 효율성의 저하를 초래할 수 있다. 본 논문에서는 에너지 소비 데이터를 수집하고 이를 CNN (Convolutional Neural Network) 기법을 적용하여 분석함으로써 재봉 작업을 통하여 생산한 제품의 수량을 추적하고 자동으로 집계할 수 있는 봉제 작업 생산 추적 시스템을 제안한다. 개발된 시스템을 통하여 2종의 재봉 작업을 테스트 한 결과, 최대 98.6 %의 정확도를 보이며 재봉 작업을 감지할 수 있었다. 개발도상국에서 의류봉제산업은 매우 중요한 산업이나, 위에 언급한 문제들을 해결하기 위하여 고가의 첨단기술을 적용하는 등 많은 자본을 투입하는 것은 크게 제한된다. 적정 기술을 적용한 본 기술은 이러한 개발도상국의 의류산업에 큰 도움을 줄 수 있을 것으로 판단된다.
본 연구는 앞으로 도시 시민의 안전보호와 시설물 관리를 위하여 공공부문의 통합관제서비스가 증가할 것으로 예상됨에 따라 서울 소재의 CCTV통합관제센터에 대하여 유형별 분류와 실내공간특성에 대한 분석을 실시하였다. 조사대상은 2007년 이후 구축된 서울의 통합관제센터 8곳으로 일반적인 특성, 공간기본정보, 실내공간특성의 기준에 맞춰 분석하였으며 조사의 결과를 정리한 것은 다음과 같다. 첫째, 통합관제센터의 공간기본정보를 살펴보면 소규모 CS형이 가장 많이 나타나 현재 통합관제센터 공간의 물리적 환경에 대한 면적 비중은 그리 높지 않은 것으로 나타났다. 둘째, 통합관제센터의 공간기본정보를 살펴보면 보안영역, 사무영역, 공공영역의 순으로 공간의 크기 비율에 차이가 있었다. 셋째, 현재 국내의 통합관제센터는 행정안전부의 가이드라인에 따라 획일적인 형태나 구조, 실내 환경을 나타내는 것으로 분석되었다. 본 연구는 실내디자인 연구 분야에서 깊이 있게 다루지 못했던 통합관제센터에 대한 사례연구를 실시함으로써 향후 더 나은 통합관제센터를 계획할 시 기초자료로 제공될 수 있다. 물론 본 연구는 조사대상의 사례 수가 많지 않다는 한계가 있으나 추후 사용자 인터뷰나 공간 사용성 평가 분석 등을 통해 사례분석 보다 심도있는 연구를 진행할 예정이다. 본 연구의 결과가 모니터링 실내환경을 위한 기초자료로 쓰이길 기대한다.
최근 기업의 지속가능경영 역량으로 대변되는 기업 ESG 성과(environmental, social, and corporate governance)가 투자의사 결정에 주요 요인 중 하나로 부각되고 있다. 전통적 ESG 성과 평가 프로세스는 평가기관마다의 고유 기준에 따라 질적 정성적 방식으로 수행되어 그 평가 소요 시간 및 비용이 큰 데 비해 투자의사 결정 시 신뢰성과 예측 가능성 및 적시성에 제약이 존재한다. 이에 본 연구에서는 정량화되고 공개된 기업 재무 정보를 활용하여 머신러닝을 통한 자동화된 기업 ESG 평가 예측을 시도하였다. 심층신경망 기법을 활용해 2019년부터 2021년까지 3년간 한국ESG기준원에서 제공한 1,780건의 ESG 평가에 대하여 총 12종(21,360건)의 시장 공개 재무 정보를 기반으로 예측 모형을 구축한 결과, 제안된 심층신경망 모형은 약 86%의 분류성능을 보여 여타 비교모형 대비 크게 높은 정확도를 나타냈다. 본 연구는 정량적이고 공개된 과거 기업 재무 정보만으로도 자동화된 프로세스를 통해 비교적 정확한 미래 ESG 평가 예측을 달성할 수 있었다는 점에 의의가 크다. 특히 기업 ESG 관련 정보 접근이 상대적으로 불리한 일반 투자자들의 입장에서 볼 때 낮은 비용과 적은 시간 투자로도 기업 ESG 성과 평가에 대한 예측 가능성과 적시성을 향상 시킬 수 있다는 점에 실용적 함의가 있다. 또한 본 연구는 향후 추가적인 국내외 데이터 수집 및 모형 고도화를 통해 기업 ESG 성과 예측 분야에서의 확장이 기대된다.
물류와 유통에서 장바구니 분석(MBA: Market Basket Analysis)은 주요 판매 상품 간의 연관성을 분석하고, 내부 운영 효율성을 높이기 위한 중요한 수단으로 활용된다. 특히, 장바구니 분석의 결과는 상품 구매예측, 상품 추천 및 매장의 상품 전시 구조 등 의사결정 과정에 중요한 참고자료로 활용된다. 최근 전자상거래의 발전으로 하나의 유통 및 물류 기업이 취급하는 품목의 수가 급격하게 증가하면서 기존의 분석기법인 Apriori와 FP-Grwoth 등의 방법은 계산량의 기하급수적 증가로 인한 속도저하와 실제 비즈니스에 적용하기 위한 중요한 연관규칙을 살피기에는 한계가 있다. 본 연구에서는 이러한 한계를 극복하기 위해, 상품의 최상위 분류체계인 Main-Category 수준에서는 상품의 판매량을 함께 고려할 수 있는 utility item set mining 기법을 활용하여 주로 함께 판매된 상품군을 우선 선별하였다. 그 후, sub-category 수준에서는 FP-Growth를 활용하여 함께 판매되는 상품 유형을 식별하였다. 이렇게 순차적 레이어 필터링 기법을 활용하여 불필요한 연산을 줄일 수 있어 현실적으로 활용가능한 결과를 제시할 수 있다.
항로표지가 이용자에게 지속 가능한 서비스를 제공하기 위해서는 항로표지사고가 발생하지 않을 때 가능하다. 만약 항로표지사고가 발생한다면 관리자는 이를 효율적으로 관리하여 유사한 사고를 예방해야 한다. 하지만 현재 항로표지사고 관리는 사고의 원인과 종류만 명시할 뿐 별도의 지침이 없어 관리자에 따라 다르게 기록되고 있는 실정이다. 이에 본 연구에서는 항로표지사고를 재정립하고자 하였다. 이를 위해 지난 23년(00-22년)간 발생한 항로표지사고, IALA의 항로표지 정보 표준인 S-201, 사고의 범주인 교통사고와 해양사고를 분석하였다. 이를 토대로 항로표지사고의 요인은 내부적 원인과 외부적 원인으로 구분하였고, 사고유형은 등탑사고, 부표사고, 장비사고의 3종으로 구분하였다. 1차 항목을 좀더 세분화하여 사고 원인은 계류구, 기상악화 등 7개 항목과 사고 현상(종류)은 등탑파손, 부표유실, 장비고장 등 11개 항목으로 재정립하였다. 이러한 연구결과는 차후 항로표지사고 통계를 제공하기 위한 기초자료로 활용될 수 있을 것이다.
본 연구는 이용자들의 인식과 경험이 내재된 소셜미디어 사진에서 경관 이미지를 분석하기 위한 방법으로 CNN 딥러닝 방법을 소개하고 평가하는 데 그 목적이 있다. 본 연구에서는 힐링장소를 연구의 대상으로 설정하여 경관 이미지를 분석하였다. 연구를 위해 텍스트마이닝과 선행연구 고찰을 통해 힐링과 관련되는 7가지의 경관 형용사를 선정하였다. 이후 CNN 딥러닝 학습 사진 구축을 위해 50명의 평가자를 모집하였으며, 평가자들에게 포털사이트에서 '힐링', '힐링풍경', '힐링장소'로 검색되는 사진 중 7가지 형용사마다 가장 적합한 사진을 3장씩 수집하도록 하였다. 수집된 사진을 정제 및 데이터 증강 과정을 거쳐 CNN 모델을 제작하였다. 이후 힐링장소 경관 분석을 위해 포털사이트에서 '힐링'과 '힐링풍경'으로 검색되는 15,097장의 사진을 수집하여 이를 분류하였다. 연구결과 '기타'와 '실내'를 제외한 범주에서 '조용한'이 2,093장(22%)으로 가장 높게 나타났으며, '개방적인', '즐거운', '안락한', '깨끗한', '자연적인', '아름다운' 순으로 나타났다. CNN 딥러닝은 경관 이미지 분석에서도 결과를 도출 가능한 분석 방법임을 연구를 통해 알 수 있었다. 또한, 기존 경관 분석 방법을 보완할 수 있는 하나의 방법임을 시사하였고, 경관 이미지 학습 데이터 셋 구축을 통한 향후 심층적이고 다양한 경관 분석을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.