Purpose: This study was conducted to analyze trends in research papers published in the Journal of Korean Public Health Nursing, and to compare and contrast similarities and differences of papers before and after listing in the Korea Citation Index (KCI) in 2007. Methods: A descriptive study was conducted with 266 published studies during the 10-year period. The criteria for analysis included types of research, characteristics of researchers and participants, designs, data collection methods and study instruments, ethical considerations, data analysis, and keywords. Results: Studies conducted with grants constituted 23.7%, and students (32.3%) and general populations (25.2%) comprised the largest proportion of the study participants. The majority of the papers were quantitative research (93.2%), and self-reported methods (63.1%) were most frequently utilized. Seventy percent of the studies obtained verbal consent from the participants. Among the study instruments, psychosocial indicators (41.1%) were most frequently employed. The trends indicated that grant studies, students and general populations as study participants, and experimental studies increased, and use of written consent increased after KCI registration. Conclusions: The results could be used to understand the context of scientific research and to improve the quality of the research papers published in the Journal of Korean Public Health Nursing.
Objectives : Trend of R&D of herbal medicine for dementia treatment was examined based on the quantitative information analysis for establishing the national strategy of research on dementia treatment with oriental medicine. Methods : Definition was made to clarify the technology for development of herbal medicine for dementia treatment. Based on the initial keyword provided by experts in the field, queries were compounded to conduct search in the search engines of WoS and DWPI. The raw data (papers or patents) extracted from the initial search were examined by expert-review before objects of analysis were determined. Then, the accumulated data was analyzed in terms of year, country and organization, which led to examination of the trend of R&D. And the research performance evaluation for dementia treatment technologies was also made in terms of country, organization and researcher based on the forward citation analysis. The international cooperation intensity was examined on the basis of analysis of network by researcher before analysis results were put together to select lead researchers. Results : According to the quantitative information analysis of 1,330 articles that were selected as analysis objects, the number of papers on natural products research for dementia treatment has increased by around 4.6 times in recent five years. This indicates that the intensive studies have been underway recently. It was found to be the US that had the highest level in research filed of herbal medicine for dementia treatment and the highest capacity of international cooperation for that purpose. On the contrary, Korea had the share of papers at 5.1%, the number of countries in cooperation research at 8, and the article quality index at 0.40, showing that the qualitative level was insufficient, compared to the quantitative outcome. In particular, Korea was found to have no intensity of international cooperation among researchers. In case of patent, the results of information analysis of 305 patents selected as analysis objects demonstrated that China had the highest share while Korea had the very low frequency of patent application quantitatively. Conclusions : In this study, the research to develop herbal medicine for dementia treatment has recently drawn much attention that has spread around the globe. Therefore, these results suggest establishing the strategy to develop technology for dementia treatment with oriental medicine in the future based on quantitative information analysis.
Journal of the Korean Society of Earth Science Education
/
v.14
no.2
/
pp.173-192
/
2021
The purpose of this study is to analyze the previous research on geological fieldwork from 2000 to 2020, examine the tasks that have been focused on, and suggest directions and implications for future geological fieldwork research. The data was conducted for the thesis searched on ScienceON and RISS in relation to geological fieldwork and journals listed in the Korean Citation Index(KCI), and the study title was analyzed using the semantic network analysis. For analysis, the data that had been pre-processed was visualized as a network by semantic network analysis, and frequency and centrality were analyzed. The centrality analysis was based on degree centrality and eigenvector centrality, and all analyzes were performed by dividing the entire study period into four periods: 2000-2005, 2006-2010, 2011-2015, and 2016-2020. As a result, research on geological fieldwork focused more on the development of geological field courses, and in particular, jeju island was actively discussed as a learning site. Also, the study was conducted on students rather than teachers, and among them, high school students showed high frequency and centrality. In addition, it can be seen that studies on the educational effect of geological fieldwork were discussed, either in connection with programs such as STEAM, free-semester program, or indirect geological fieldwork methods such as web, flash panorama, and 3D. This study is meaningful in that it suggests the direction of future research by looking back on the research on geological fieldwork that has been done so far.
This study identifies the trend of Korean accounting researches on profit adjustment. We analyzed the abstract of accounting research articles published in Korean Citation Index (KCI) by using text mining technique. Among papers whose themes were profit adjustment, topics were divided into 4 parts: (i) Auditing and audit reports, (ii) corporate taxes and debt ratios, (iii) general management strategy of companies, and (iv) financial statements and accounting principles. Unlike the prediction that financial statements and accounting principles would be the main topic, auditing was analyzed as the most studied area. We analyzed topic trends based on the number of papers by topic, and could figure out the impact of K-IFRS introduction on profit adjustment research. By using Big Data method, this study enabled the division of research themes that have not been available in the past studies. This study enables the policy makers and business managers to learn about additional considerations in addition to accounting principles related to profit adjustment.
Nowadays, artificial intelligence model approaches such as machine and deep learning have been widely used to predict variations of water quality in various freshwater bodies. In particular, many researchers have tried to predict the occurrence of cyanobacterial blooms in inland water, which pose a threat to human health and aquatic ecosystems. Therefore, the objective of this study were to: 1) review studies on the application of machine learning models for predicting the occurrence of cyanobacterial blooms and its metabolites and 2) prospect for future study on the prediction of cyanobacteria by machine learning models including deep learning. In this study, a systematic literature search and review were conducted using SCOPUS, which is Elsevier's abstract and citation database. The key results showed that deep learning models were usually used to predict cyanobacterial cells, while machine learning models focused on predicting cyanobacterial metabolites such as concentrations of microcystin, geosmin, and 2-methylisoborneol (2-MIB) in reservoirs. There was a distinct difference in the use of input variables to predict cyanobacterial cells and metabolites. The application of deep learning models through the construction of big data may be encouraged to build accurate models to predict cyanobacterial metabolites.
Stem cells transplantation (SCT) is known as a newfound strategy for multiple sclerosis (MS) treatment. Human umbilical cord mesenchymal stem cells (hUCMSCs) contain various regenerative features. Experimental autoimmune encephalomyelitis (EAE) is a laboratory model of MS. This meta-analysis study was conducted to assess the overall therapeutic effects of hUCMSCs on reduction of clinical score (CS) and restoration of active movement in EAE-induced animals. For comprehensive searching (in various English and Persian databases until May 1, 2024), the main keywords of "Experimental Autoimmune Encephalomyelitis", "Multiple Sclerosis", "Human", "Umbilical Cord", "Mesenchymal", and "Stem Cell" were hired. Collected data were transferred to the citation manager software (EndNote x8) and duplicate papers were merged. Primary and secondary screenings were applied (according to the inclusion and exclusion criteria) and eligible studies were prepared for data collection. CS of two phases of peak and recovery of EAE were extracted as the difference in means and various analyses including heterogeneity, publication bias, funnel plot, and sensitivity index were reported. Meta-analysis was applied by CMA software (v.2), P<0.05 was considered a significant level, and the confidence interval (CI) was determined 95% (95% CI). Six eligible high-quality (approved by ARRIVE checklist) papers were gathered. The difference in means of peak and recovery phases were -0.775 (-1.325 to -0.225; P=0.006; I2=90.417%) and -1.230 (-1.759 to -0.700; P<0.001; I2=93.402%), respectively. The overall therapeutic effects of SCT of hUCMSCs on the EAE cases was -1.011 (95% CI=-1.392 to -0.629; P=0.001). hUCMSCs transplantation through the intravenous route to the animal MS model (EAE) seems a considerably effective procedure for the alleviation of motor defects in both phases of peak and recovery.
Journal of the Korean Society for information Management
/
v.31
no.2
/
pp.57-77
/
2014
As co-authorship has been prevalent within science communities, counting the credit of co-authors appropriately is an important consideration, particularly in the context of identifying the knowledge structure of fields with author-based analysis. The purpose of this study is to compare the characteristics of co-author credit counting methods by utilizing correlations, multidimensional scaling, and pathfinder networks. To achieve this purpose, this study analyzed a dataset of 2,014 journal articles and 3,892 cited authors from the Journal of the Architectural Institute of Korea: Planning & Design from 2003 to 2008 in the field of Architecture in Korea. In this study, six different methods of crediting co-authors are selected for comparative analyses. These methods are first-author counting (m1), straight full counting (m2), and fractional counting (m3), proportional counting with a total score of 1 (m4), proportional counting with a total score between 1 and 2 (m5), and first-author-weighted fractional counting (m6). As shown in the data analysis, m1 and m2 are found as extreme opposites, since m1 counts only first authors and m2 assigns all co-authors equally with a credit score of 1. With correlation and multidimensional scaling analyses, among five counting methods (from m2 to m6), a group of counting methods including m3, m4, and m5 are found to be relatively similar. When the knowledge structure is visualized with pathfinder network, the knowledge structure networks from different counting methods are differently presented due to the connections of individual links. In addition, the internal validity shows that first-author-weighted fractional counting (m6) might be considered a better method to author clustering. Findings demonstrate that different co-author counting methods influence the network results of knowledge structure and a better counting method is revealed for author clustering.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.6
/
pp.455-460
/
2020
The governments of Korea, China, and Japan have operated comprehensive research institutes for railway technologies. Korea Railroad Research Institute (KRRI), China Academy of Railway Sciences Corporation Limited (CARS), and Railway Technical Research Institute (RTRI) are representatives of comprehensive railway research institutes in each country. KRRI was found to be the most advanced in the quantitative competitiveness of patents. In terms of qualitative competitiveness, KRRI has strength in civil engineering, whereas RTRI has strength in electricity. KRRI was found to have the greatest efforts in securing competitiveness in overseas property rights. By comparing the publication of papers, CARS published the most papers. On the other hand, from 2015, KRRI showed an upward trend and published the most papers. By examining the impact of the papers by the citation, KRRI was found to have higher competitiveness than the other two institutions. In the future, it will be necessary to perform big data analysis on patents and papers of the three organizations, derive the key research areas and promising technology areas for each institute, and establish a mid-to-long-term development plan for railway technology based on scientific evidence.
Journal of The Korean Association of Information Education
/
v.24
no.4
/
pp.313-325
/
2020
There is a growing interest and need for the educational use of artificial intelligence as artificial intelligence technologies such as machine learning and deep learning, the core technologies of the intelligent information society, owing to the recent innovative technological advances. Consequently, the Ministry of Education announced the First Information Education Comprehensive Plan for introducing artificial intelligence competence enhancing education into the education field in preparation for the intelligent information society based on artificial intelligence technologies. Therefore, this study collected 416 overseas papers related to the educational use of artificial intelligence from the Web of Science (WoS) in order to explore the potential for using artificial intelligence educationally. This study analyzed the research status and research topic by country, citation counts, network analysis on keywords of the collected data by using the bibliometrix package of R program. Through this, it was possible to identify the research trend on the educational use of artificial intelligence, currently being conducted in foreign countries. It is believed that it will be possible to obtain implications for the topics and directions to be studied in the information education for strengthening artificial intelligence education based on the results of this study.
Journal of the Korean Society of Earth Science Education
/
v.10
no.3
/
pp.290-307
/
2017
The purpose of this study is to analyze the research trends related to qualitative research on science education, to provide basic data of qualitative research on science education and to select the direction of follow-up research. The subject of the study is the level of Korean Citation Index (KCI-listed, KCI listing candidates), that can be searched by the key phrase, 'qualitative research', 'science education' in Korean language through the RISS service. In this study, the Descriptive Statistical Analysis Method is utilized to discover the number of research articles, classifying them by year and by journal. Also, the Sementic Network Analysis was conducted to the frequency of key words, Centrality Analysis throughout a variety of research articles using krkwic and Ucinet6.0. The results show that first, 138 research papers were published in 14 journals from 2005 to 2017. Second,, the analysis showed the highest frequency of appearance keyword in each article, 'elementary school teacher', 'gifted student', 'science teacher', 'class' were higher than others. third, according to the results of the whole Network Analysis, 'Analysis', 'elementary school', 'class' were analyzed as a highly influential node. And 'Comparison', 'inquiry', 'recognition', 'gifted students' were not close to the center of network. Fourth, keywords that appear in all sections are analysis, gifted students, and elementary school students, and can be analyzed continuously based on studies, lessons or recognition, and characteristics. Based on the results of this study, we explored the past and present of the study subjects related to the study of science education quality and discussed future direction of study.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.