• Title/Summary/Keyword: data augmentation

Search Result 580, Processing Time 0.029 seconds

딥러닝을 이용한 화강암 X-ray CT 영상에서의 균열 검출에 관한 연구 (Pixel-level Crack Detection in X-ray Computed Tomography Image of Granite using Deep Learning)

  • 현석환;이준성;전성환;김예진;김광염;윤태섭
    • 터널과지하공간
    • /
    • 제29권3호
    • /
    • pp.184-196
    • /
    • 2019
  • 본 연구에서는 화강암 시편에서 수압 파쇄법에 의해 생성된 미세균열의 3차원 형상을 X-ray CT 영상과 딥러닝을 이용하여 추출하였다. 실험으로 생성된 미세균열은 X-ray CT 영상 상에서 일반적인 영상처리방법으로는 추출하기 매우 어렵고 육안으로만 관찰이 가능한 형태를 지닌다. 하지만 본 연구에서 제안한 합성곱 신경망(Convolutional neural network) 기반 인코더-디코더(Encoder-Decoder) 구조의 딥러닝 모델을 통해 미세균열을 정량적으로 추출할 수 있었다. 특히 픽셀 단위의 미세균열 추출을 위해 인코딩 과정에서 소실되는 정보를 디코딩 과정으로 직접 전달하는 디코더 모델을 제안하였다. 또한, 딥러닝 기반 신경망 학습에 필요한 데이터의 수를 증가시키기 위해 이미지의 분할(Division), 회전(Rotation), 그리고 반전(Flipping) 등으로 데이터를 생성하는 영상 증대 방법을 적용하였으며 이때 최적의 조합을 확인하였다. 최적의 영상 학습 데이터 증대 방법을 적용하였을 때 검증 데이터뿐만 아니라 테스트 데이터에서의 성능 향상을 확인하였다. 학습 데이터의 원본 개수가 딥러닝 기반 신경망의 균열 추출 성능에 미치는 영향을 확인하고 딥러닝 기술을 사용하여 성공적으로 미세균열을 추출하였다.

X-ray 및 초음파 영상을 활용한 고관절 이형성증 진단을 위한 특징점 검출 딥러닝 모델 비교 연구 (A comparative study on keypoint detection for developmental dysplasia of hip diagnosis using deep learning models in X-ray and ultrasound images)

  • 김성현;이경수;이시욱;장진호;황재윤;김지훈
    • 한국음향학회지
    • /
    • 제42권5호
    • /
    • pp.460-468
    • /
    • 2023
  • 고관절 이형성증(Developmental Dysplasia of Hip, DDH)은 영유아 성장기에 흔히 발생하는 병리학적 상태로, 영유아의 성장을 방해하고 잠재적인 합병증을 유발하는 원인 중 하나이며 이를 조기에 발견하고 치료하는 것은 매우 중요하다. 기존의 DDH 진단 방법으로는 촉진법과 X-ray 또는 초음파 영상 기반 고관절에서의 특징점 검출을 이용한 진단 방법이 있지만 특징점 검출 시 객관성과 생산성에 제한점이 존재한다. 본 연구에서는 X-ray 및 초음파 영상을 이용한 딥러닝 모델 기반 특징점 검출 방법을 제시하고, 다양한 딥러닝 모델을 이용하여 특징점 검출의 성능을 비교 분석하였다. 또한, 부족한 의료 데이터를 보완하는 방법인 다양한 데이터 증강 기법을 제시하고 비교 평가하였다. 본 연구에서는 Residual Network 152(ResNet152) 및 Simple & Complex augmentation 기법을 적용하였을 때 가장 높은 특징점 검출 성능을 보여주었으며, X-ray 영상에서 평균 Object Keypoint Similarity(OKS)가 약 95.33 %, 초음파 영상에서는 약 81.21 %로 각각 측정되었다. 이러한 결과는 고관절 초음파 및 X-ray 영상에서 딥러닝 모델을 적용함으로써 DDH 진단 시 특징점 검출에 관한 객관성과 생산성을 향상시킬 수 있음을 보여준다.

A Study of SBAS Position Domain Analysis Method: WAAS and EGNOS Performance Evaluation

  • Kim, Dong-Uk;Han, Deok-Hwa;Kim, Jung-Beom;Kim, Hwi-Gyeom;Kee, Chang-Don;Choi, Kwang-Sik;Choi, Heon-Ho;Lee, Eun-Sung
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제5권4호
    • /
    • pp.203-211
    • /
    • 2016
  • A Satellite Based Augmentation System (SBAS) is a system that provides positioning information with high and accurate reliability to users who require ensuring high safety such as airplane taking off and landing. A continuous performance evaluation on navigation safety facilities shall be performed to determine whether developed systems meet the required performance before and after the operation. In this paper, SBAS position domain analysis is discussed in relation to analysis items for performance evaluation. The performance evaluation on the SBAS in the position domain shall conduct analysis on accuracy, integrity, continuity, and availability, which are items in the required navigation performance (RNP). In the paper, position domain analysis was conducted with regard to the Wide Area Augmentation System (WAAS) in the USA and the European Geostationary Navigation Overlay Service (EGNOS), which were developed already and now under operation. The analysis result showed that each of the systems satisfied the APV-I performance requirements recommended by the International Civil Aviation Organization (ICAO) with regard to daily data. It is necessary to verify using long-term data, whether the performance requirements in the RNP items are satisfied for system certification.

폐 결절 검출을 위한 합성곱 신경망의 성능 개선 (Performance Improvement of Convolutional Neural Network for Pulmonary Nodule Detection)

  • 김한웅;김병남;이지은;장원석;유선국
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권5호
    • /
    • pp.237-241
    • /
    • 2017
  • Early detection of the pulmonary nodule is important for diagnosis and treatment of lung cancer. Recently, CT has been used as a screening tool for lung nodule detection. And, it has been reported that computer aided detection(CAD) systems can improve the accuracy of the radiologist in detection nodules on CT scan. The previous study has been proposed a method using Convolutional Neural Network(CNN) in Lung CAD system. But the proposed model has a limitation in accuracy due to its sparse layer structure. Therefore, we propose a Deep Convolutional Neural Network to overcome this limitation. The model proposed in this work is consist of 14 layers including 8 convolutional layers and 4 fully connected layers. The CNN model is trained and tested with 61,404 regions-of-interest (ROIs) patches of lung image including 39,760 nodules and 21,644 non-nodules extracted from the Lung Image Database Consortium(LIDC) dataset. We could obtain the classification accuracy of 91.79% with the CNN model presented in this work. To prevent overfitting, we trained the model with Augmented Dataset and regularization term in the cost function. With L1, L2 regularization at Training process, we obtained 92.39%, 92.52% of accuracy respectively. And we obtained 93.52% with data augmentation. In conclusion, we could obtain the accuracy of 93.75% with L2 Regularization and Data Augmentation.

단일 이미지 패턴을 이용한 다수의 전력설비 데이터를 증강하기 위한 패턴 배열화 기법 설계 (Design of Pattern Array Method for Multi Data Augmentation of Power Equipment uisng Single Image Pattern)

  • 김석수
    • 융합정보논문지
    • /
    • 제10권11호
    • /
    • pp.1-8
    • /
    • 2020
  • 전력 소비량이 극대화 되면서 개인 전력 중개사업자 및 전력 생산설비의 증가에 따라 전력 설비를 유지, 보수하기 위한 현장 설비 담당자들을 위한 증강현실 기반 모니터링 시스템들에 대한 연구가 활발하게 진행되고 있다. 그러나 기존 증강현실 기반 모니터링 시스템들의 경우 외부 환경, 설비의 복잡성, 조명환경에 대한 간섭 등의 문제로 인하여 정확한 패턴 검출이 어려우며, 전력 설비에 대한 다양한 센싱 정보 및 서비스 정보를 하나의 패턴에 매칭하지 못하는 문제가 있다. 이로 인하여 전력 설비의 센서별로 단일 이미지의 패턴을 이용하여 센서 정보를 매칭하기 때문에 모든 정보를 증강하여 제공하기 위해 다수의 이미지 패턴이 필요하다. 본 논문에서는 다수의 특징 패턴들로 구성된 단일 이미지에서 특징 패턴들의 배열조합을 통해 다수의 정보를 매칭하여 제공하는 단일 이미지 패턴 배열화 기법을 제안한다.

한국 전통문화 말뭉치구축 및 Bi-LSTM-CNN-CRF를 활용한 전통문화 개체명 인식 모델 개발 (Constructing for Korean Traditional culture Corpus and Development of Named Entity Recognition Model using Bi-LSTM-CNN-CRFs)

  • 김경민;김규경;조재춘;임희석
    • 한국융합학회논문지
    • /
    • 제9권12호
    • /
    • pp.47-52
    • /
    • 2018
  • 개체명 인식(Named Entity Recognition)시스템은 문서로부터 고유한 의미를 가질 수 있는 인명(PS), 지명(LC), 기관명(OG) 등의 개체명을 추출하고 추출된 개체명의 범주를 결정하는 시스템이다. 최근 딥러닝 방식을 이용한 개체명 인식 연구에서 입력 데이터의 앞, 뒤 방향을 고려한 LSTM 기반의 Bi-LSTM 모델로부터 출력 데이터 간의 전이 확률을 이용한 CRF를 결합한 방식의 Bi-LSTM-CRF가 우수한 성능을 보이고, 문자 및 단어 단위의 효율적인 임베딩 벡터생성에 관한 연구와 CNN, LSTM을 활용한 모델에서도 좋은 성능을 보여주고 있다. 본 연구에서는 한국어 개체명 인식시스템 성능 향상을 위해 자질을 보강한 Bi-LSTM-CNN-CRF 모델에 관해 기술하고 전통문화 말뭉치구축 방식에 대해 제안한다. 그리고 구축한 말뭉치를 한국어 개체명 인식 성능 향상을 위한 자질 보강 모델 Bi-LSTM-CNN-CRF로 학습한 결과에 대해 제안한다.

Activities and Planning for KRS Coordinates Maintenance

  • Kang, Hee Won;Cho, Sunglyong;Kim, Heesung;Yun, Youngsun;Lee, ByungSeok
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권4호
    • /
    • pp.327-332
    • /
    • 2022
  • The Korea Augmentation Satellite System (KASS) is the Satellite-Based Augmentation System (SBAS) under development in Korea. KASS navigation service support navigation Safety of Life (SoL) service. KASS signal provides corrections to Global Positioning System (GPS) data received from KASS Reference Stations (KRS) and is broadcast form Geostationary Earth Orbiting (GEO) satellites to KASS users and is used by GPS/SBAS user equipment to improve the accuracy, availability, continuity and integrity of the navigation solution. Seven KRS's collect the satellite data and send them to the KASS Processing Stations (KPS) for the generation of the corrections and the monitoring the integrity. For performing its computation the KPS needs to know accurate and reliable KRS antennas coordinates. These coordinates are provided as configuration parameters to the KPS. This means that the reference frame in which the KPS work is the one represented by the set of coordinates provided as input. Therefore, the activity to maintain the accuracy of the KRS antenna coordinates is necessary, knowing that coordinates can evolve due to earth plates movements or earthquakes. In this paper, we analyzed the geodetic survey results for KRS antenna coordinates from Site Acceptance Test (SAT) #1 in December 2020 to August 2022. In the future, it is expected that these activities and planning for KRS coordinates maintenance will be produced and provided to KASS system operators for KPS configuration updates during the KASS lifetime of 15 years. Through these maintenance activities, it is expected that monitoring and analysis of unpredictable events such as earthquakes and seism will be possible in the future.

Geodetic Survey Campaigns and Maintenance Plan for KASS Reference Station Antenna Coordinates

  • Hwanho, Jeong;Hyunjin, Jang;Youngsun, Yun;ByungSeok, Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권1호
    • /
    • pp.83-89
    • /
    • 2023
  • The Korea Augmentation Satellite System (KASS) system is a Satellite Based Augmentation System (SBAS) under development to provide APV-I SBAS service in the Republic of Korea. The KASS ground segment generates correction and integrity information for GPS measurements of KASS users using the accurate positions of KASS Reference Station (KRS) antenna phase centers. For this reason, the accuracy of KRS reference points through geodetic survey campaigns is one of the important factors for providing the KASS service in compliance with the required navigation performance. In order to obtain accurate positions, two geodetic survey campaigns were performed at several reference points, such as Mark, Center of Mast at Ground Level (CMGL), and Center of Hole in Top Plate (CHTP), of each KRS site using three different survey methods, the Virtual Reference Station (VRS), Flächen Korrektur Parameter (FKP), and raw data post-processing methods. By comparing and analyzing the results, the computed coordinates of the reference points were verified and Antenna Phase Center (APC) positions were calculated using KRS Antenna Reference Point (ARP) data, and the first KASS Site Acceptance Test (SAT#1) was performed successfully using the verified APC coordinates. After the first site survey activities, the KASS operators should maintain the coordinates with the required performance such that the overall KASS navigation performance commitment is guaranteed during the lifetime of 15 years. Therefore, the maintenance plan for the KRS antenna coordinates should be developed before the commissioning of KASS operation planned after 2023. Therefore, this paper presents a geodetic survey method selected for the maintenance activities and provides the rationale for using this method.

YOLO 기반 실종자 수색 AI 응용 시스템 구현 (Implementation of YOLO based Missing Person Search Al Application System)

  • 김하연;김종훈;정세훈;심춘보
    • 스마트미디어저널
    • /
    • 제12권9호
    • /
    • pp.159-170
    • /
    • 2023
  • 실종자 수색은 많은 시간과 인력이 필요하다. 그 해결책의 일환으로 YOLO 기반 모델을 활용하여 실종자 수색 AI 시스템을 구현하였다. 객 객체 탐지 모델을 훈련하기 위해 AI-Hub에서 드론 이동체 인지 영상(도로 고정)을 수집하고 모델을 학습하였다. 또한, 훈련 데이터 세트와 상이한 환경에서의 성능을 평가하기 위해 산악 환경 데이터 세트를 추가 수집하였다. 실종자 수색 AI 시스템의 최적화를 위해 모델 크기 및 하이퍼파라미터에 따른 성능평가, 과대적합 우려에 대한 추가 성능평가를 시행하였다. 성능평가 결과 YOLOv5-L 모델이 우수한 성능을 보이는 것을 확인할 수 있었으며 데이터 증강 기법을 적용함에 따라 모델의 성능이 보다 향상되었다. 이후 웹 서비스에는 데이터 증강 기법을 적용한 YOLOv5-L 모델을 적용하여 실종자 수색의 효율성을 높였다.

Real-time semantic segmentation of gastric intestinal metaplasia using a deep learning approach

  • Vitchaya Siripoppohn;Rapat Pittayanon;Kasenee Tiankanon;Natee Faknak;Anapat Sanpavat;Naruemon Klaikaew;Peerapon Vateekul;Rungsun Rerknimitr
    • Clinical Endoscopy
    • /
    • 제55권3호
    • /
    • pp.390-400
    • /
    • 2022
  • Background/Aims: Previous artificial intelligence (AI) models attempting to segment gastric intestinal metaplasia (GIM) areas have failed to be deployed in real-time endoscopy due to their slow inference speeds. Here, we propose a new GIM segmentation AI model with inference speeds faster than 25 frames per second that maintains a high level of accuracy. Methods: Investigators from Chulalongkorn University obtained 802 histological-proven GIM images for AI model training. Four strategies were proposed to improve the model accuracy. First, transfer learning was employed to the public colon datasets. Second, an image preprocessing technique contrast-limited adaptive histogram equalization was employed to produce clearer GIM areas. Third, data augmentation was applied for a more robust model. Lastly, the bilateral segmentation network model was applied to segment GIM areas in real time. The results were analyzed using different validity values. Results: From the internal test, our AI model achieved an inference speed of 31.53 frames per second. GIM detection showed sensitivity, specificity, positive predictive, negative predictive, accuracy, and mean intersection over union in GIM segmentation values of 93%, 80%, 82%, 92%, 87%, and 57%, respectively. Conclusions: The bilateral segmentation network combined with transfer learning, contrast-limited adaptive histogram equalization, and data augmentation can provide high sensitivity and good accuracy for GIM detection and segmentation.