• Title/Summary/Keyword: data assimilation

Search Result 452, Processing Time 0.028 seconds

컨버전스 서비스의 MDS 동화정도가 서비스 선호와 지속적 사용에 미치는 영향에 관한 연구: 모바일 서비스의 제도화 관점에서

  • Lee, Sang-Hun;Jeong, Yu-Jeong;Lee, Ho-Geun;Park, Hyeon-Ji
    • 한국경영정보학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.35-51
    • /
    • 2008
  • This study is to investigate factors that affect preference to CMDS(convergence mobile data service) on institutionalization of MDS. A research model was proposed and subsequent hypotheses were empirically tested with partial least square (PLS) based on 400 responses from the users of CMDS(DMB: 200 / m-Banking: 200). It was learned that institutionalization of technology related building MDS was positively associated with assimilation of MDS(represent a institutionalization of MDS) rather than service quality and use gratification. It means that users decided use of MDS refereed from its level of assimilation to MDS channel. Also, attractiveness of alternatives to CMDS is negatively associated with continuous use of CMDS and preference to CMDS. Lastly, their association strength was partially moderated by the type of motivation for using CMDS.

  • PDF

An Affordable Implementation of Kalman Filter by Eliminating the Explicit Temporal Evolution of the Background Error Covariance Matrix (칼만필터의 자료동화 활용을 위한 배경오차 공분산의 명시적 시간 진전 제거)

  • Lim, Gyu-Ho;Suh, Ae-Sook;Ha, Ji-Hyun
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • In meteorology, exploitation of Kalman filter as a data assimilation system is virtually impossible due to simultaneous requirements of adjoint model and large computer resource. The other substitute of utilizing ensemble Kalman filter is only affordable by compensating an enormous usage of computing resource. Furthermore, the latter employs ensemble integration sets for evolving the background error covariance matrix by compensating the dynamical feature of the temporal evolution of weather conditions. We propose a new implementation method that works without the adjoint model by utilizing the explicit expression of the background error covariance matrix in backward evolution. It will also break a barrier in the evolution of the covariance matrix. The method may be applied with a slight modification to the real time assimilation or the retrospective analysis.

Analysis of low level cloud prediction in the KMA Local Data Assimilation and Prediction System(LDAPS) (기상청 국지예보모델의 저고도 구름 예측 분석)

  • Ahn, Yongjun;Jang, Jiwon;Kim, Ki-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.124-129
    • /
    • 2017
  • Clouds are an important factor in aircraft flight. In particular, a significant impact on small aircraft flying at low altitude. Therefore, we have verified and characterized the low level cloud prediction data of the Unified Model(UM) - based Local Data Assimilation and Prediction System(LDAPS) operated by KMA in order to develop cloud forecasting service and contents important for safety of low-altitude aircraft flight. As a result of the low level cloud test for seven airports in Korea, a high correlation coefficient of 0.4 ~ 0.7 was obtained for 0-36 leading time. Also, we found that the prediction performance does not decrease as the lead time increases. Based on the results of this study, it is expected that model-based forecasting data for low-altitude aviation meteorology services can be produced.

Calculation of Soil Moisture and Evapotranspiration for KLDAS(Korea Land Data Assimilation System) using Hydrometeorological Data Set (수문기상 데이터 세트를 이용한 KLDAS(Korea Land Data Assimilation System)의 토양수분·증발산량 산출)

  • PARK, Gwang-Ha;LEE, Kyung-Tae;KYE, Chang-Woo;YU, Wan-Sik;HWANG, Eui-Ho;KANG, Do-Hyuk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.65-81
    • /
    • 2021
  • In this study, soil moisture and evapotranspiration were calculated throughout South Korea using the Korea Land Data Assimilation System(KLDAS) of the Korea-Land Surface Information System(K-LIS) built on the basis of the Land Information System (LIS). The hydrometeorological data sets used to drive K-LIS and build KLDAS are MERRA-2(Modern-Era Retrospective analysis for Research and Applications, version 2) GDAS(Global Data Assimilation System) and ASOS(Automated Synoptic Observing System) data. Since ASOS is a point-based observation, it was converted into grid data with a spatial resolution of 0.125° for the application of KLDAS(ASOS-S, ASOS-Spatial). After comparing the hydrometeorological data sets applied to KLDAS against the ground-based observation, the mean of R2 ASOS-S, MERRA-2, and GDAS were analyzed as temperature(0.994, 0.967, 0.975), pressure(0.995, 0.940, 0.942), humidity (0.993, 0.895, 0.915), and rainfall(0.897, 0.682, 0.695), respectively. For the hydrologic output comparisons, the mean of R2 was ASOS-S(0.493), MERRA-2(0.56) and GDAS (0.488) in soil moisture, and the mean of R2 was analyzed as ASOS-S(0.473), MERRA-2(0.43) and GDAS(0.615) in evapotranspiration. MERRA-2 and GDAS are quality-controlled data sets using multiple satellite and ground observation data, whereas ASOS-S is grid data using observation data from 103 points. Therefore, it is concluded that the accuracy is lowered due to the error from the distance difference between the observation data. If the more ASOS observation are secured and applied in the future, the less error due to the gridding will be expected with the increased accuracy.

Interactions between Soil Moisture and Weather Prediction in Rainfall-Runoff Application : Korea Land Data Assimilation System(KLDAS) (수리 모형을 이용한 Korea Land Data Assimilation System (KLDAS) 자료의 수문자료에 대한 영향력 분석)

  • Jung, Yong;Choi, Minha
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.172-172
    • /
    • 2011
  • The interaction between land surface and atmosphere is essentially affected by hydrometeorological variables including soil moisture. Accurate estimation of soil moisture at spatial and temporal scales is crucial to better understand its roles to the weather systems. The KLDAS(Korea Land Data Assimilation System) is a regional, specifically Korea peninsula land surface information systems. As other prior land data assimilation systems, this can provide initial soil field information which can be used in atmospheric simulations. For this study, as an enabling high-resolution tool, weather research and forecasting(WRF-ARW) model is applied to produce precipitation data using GFS(Global Forecast System) with GFS embedded and KLDAS soil moisture information as initialization data. WRF-ARW generates precipitation data for a specific region using different parameters in physics options. The produced precipitation data will be employed for simulations of Hydrological Models such as HEC(Hydrologic Engineering Center) - HMS(Hydrologic Modeling System) as predefined input data for selected regional water responses. The purpose of this study is to show the impact of a hydrometeorological variable such as soil moisture in KLDAS on hydrological consequences in Korea peninsula. The study region, Chongmi River Basin, is located in the center of Korea Peninsular. This has 60.8Km river length and 17.01% slope. This region mostly consists of farming field however the chosen study area placed in mountainous area. The length of river basin perimeter is 185Km and the average width of river is 9.53 meter with 676 meter highest elevation in this region. We have four different observation locations : Sulsung, Taepyung, Samjook, and Sangkeug observatoriesn, This watershed is selected as a tentative research location and continuously studied for getting hydrological effects from land surface information. Simulations for a real regional storm case(June 17~ June 25, 2006) are executed. WRF-ARW for this case study used WSM6 as a micro physics, Kain-Fritcsch Scheme for cumulus scheme, and YSU scheme for planetary boundary layer. The results of WRF simulations generate excellent precipitation data in terms of peak precipitation and date, and the pattern of daily precipitation for four locations. For Sankeug observatory, WRF overestimated precipitation approximately 100 mm/day on July 17, 2006. Taepyung and Samjook display that WRF produced either with KLDAS or with GFS embedded initial soil moisture data higher precipitation amounts compared to observation. Results and discussions in detail on accuracy of prediction using formerly mentioned manners are going to be presented in 2011 Annual Conference of the Korean Society of Hazard Mitigation.

  • PDF

레이더 관측자료를 이용한 호남지방의 국지강수변화에 관한 수치모의

  • Park, Geun-Yeong;Lee, Sun-Hwan;Ryu, Chan-Su
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.02a
    • /
    • pp.182-187
    • /
    • 2005
  • The weather hazard by worldwide global warming rapidly increases year by year, and the damage becomes also enormous. especially, the damage by the random local severe rain in Korea is conspicuous. The forecast is difficult, because the random local severe rain arises by the complicated mechanism. However, local weather field in the Honam district where the weather hazard arises well is accurately grasped, and the systems that predict the local severe rain early are necessary. The purpose of this research is development of radar data assimilation observed at Jindo S-band radar. The accurate observational data assimilation system is required for meteorological numerical prediction of the region scale. Diagnostic analysis system LAPS(Local Analysis and Prediction System) developed by US FSL(Forecast Systems Laboratory) is adopted assimilation system of the Honam district forecasting system.

  • PDF

A Comparative Study of the Atmospheric Boundary Layer Type in the Local Data Assimilation and Prediction System using the Data of Boseong Standard Weather Observatory (보성 표준기상관측소자료를 활용한 국지예보모델 대기경계층 유형 비교 연구)

  • Hwang, Sung Eun;Kim, Byeong-Taek;Lee, Young Tae;Shin, Seung Sook;Kim, Ki Hoon
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.504-513
    • /
    • 2021
  • Different physical processes, according to the atmospheric boundary layer types, were used in the Local Data Assimilation and Prediction System (LDAPS) of the Unified Model (UM) used by the Korea Meteorological Administration (KMA). Therefore, it is important to verify the atmospheric boundary layer types in the numerical model to improve the accuracy of the models performance. In this study, the atmospheric boundary layer types were verified using observational data. To classify the atmospheric boundary layer types, summer intensive observation data from radiosonde, flux observation instruments, Doppler wind Light Detection and Ranging(LIDAR) and ceilometer were used. A total number of 201 observation data points were analyzed over the course 61 days from June 18 to August 17, 2019. The most frequent types of differences between LDAPS and observed data were type 1 in LDAPS and type 2 in observed(each 53 times). And type 3 difference was observed in LDAPS and type 5 and 6 were observed 24 and 15 times, respectively. It was because of the simulation performance of the Cloud Physics such as that associated with the simulation of decoupled stratocumulus and cumulus cloud. Therefore, to improve the numerical model, cloud physics aspects should be considered in the atmospheric boundary layer type classification.

Validation of Energy and Water Fluxes Using Korea Land Data Assimilation and Flux Tower Measurement: Haenam KoFlux Site's Hydro-Environment Analysis (Flux Tower 관측자료와 KLDAS를 이용한 Soil-Vegetation-Atmosphere Transfer 모형의 적용:해남 KoFlux 지점의 수문순환 환경분석에 대하여)

  • Kim, Daeun;Lim, Yoon Jin;Lee, Seung Oh;Choi, Minha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.285-291
    • /
    • 2011
  • Accurate assessment of the water and energy cycles is essential to understand hydrologic, climatologic, and ecological processes. Common Land Model (CLM) is one of the well-developed Soil-Vegetation-Atmosphere Transfer (SVAT) models based on the water and energy balance equation for accurate prediction of hydro-environmental cycles. The CLM can estimate realistic and reliable results using relatively simple parameters. It has been widely used in the world, however in Korea practical applications of the CLM are rare due to lack of information and input data. In this study, the CLM with Korea Flux network (KoFlux) and Kore Land Data Assimilation System (KLDAS) data were individually validated for domestic applications. This study showed that all comparisons between observations and model results from KoFlux and KLDAS had reasonable correlation with determination coefficient of 0.73~1.00 via regression. The results confirmed the applicability of the CLM and the possibility of the KLDAS usage for the region where input data are not existed.

Data Assimilation Effect of Mobile Rawinsonde Observation using Unified Model Observing System Experiment during the Summer Intensive Observation Period in 2013 (2013년 여름철 집중관측동안 통합모델 관측시스템실험을 이용한 이동형 레윈존데 관측의 자료동화 효과)

  • Lim, Yun-Kyu;Song, Sang-Keun;Han, Sang-Ok
    • Journal of the Korean earth science society
    • /
    • v.35 no.4
    • /
    • pp.215-224
    • /
    • 2014
  • Data assimilation effect of mobile rawinsonde observation was evaluated using Unified Model (UM) with a Three-Dimensional Variational (3DVAR) data assimilation system during the intensive observation program of 2013 summer season (rainy season: 20 June-7 July 2013, heavy rain period: 8 July-30 July 2013). The analysis was performed by two sets of simulation experiments: (1) ConTroL experiment (CTL) with observation data provided by Korea Meteorological Administration (KMA) and (2) Observing System Experiment (OSE) including both KMA and mobile rawinsonde observation data. In the model verification during the rainy season, there were no distinctive differences for 500 hPa geopotential height, 850 hPa air temperature, and 300 hPa wind speed between CTL and OSE simulation due to data limitation (0000 and 1200 UTC only) at stationary rawinsonde stations. In contrast, precipitation verification using the hourly accumulated precipitation data of Automatic Synoptic Observation System (ASOS) showed that Equivalent Threat Score (ETS) of the OSE was improved by about 2% compared with that of the CTL. For cases having a positive effect of the OSE simulation, ETS of the OSE showed a significantly higher improvement (up to 41%) than that of the CTL. This estimation thus suggests that the use of mobile rawinsonde observation data using UM 3DVAR could be reasonable enough to assess the improvement of prediction accuracy.