• Title/Summary/Keyword: data analytics

Search Result 563, Processing Time 0.022 seconds

Finding Pluto: An Analytics-Based Approach to Safety Data Ecosystems

  • Barker, Thomas T.
    • Safety and Health at Work
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This review article addresses the role of safety professionals in the diffusion strategies for predictive analytics for safety performance. The article explores the models, definitions, roles, and relationships of safety professionals in knowledge application, access, management, and leadership in safety analytics. The article addresses challenges safety professionals face when integrating safety analytics in organizational settings in four operations areas: application, technology, management, and strategy. A review of existing conventional safety data sources (safety data, internal data, external data, and context data) is briefly summarized as a baseline. For each of these data sources, the article points out how emerging analytic data sources (such as Industry 4.0 and the Internet of Things) broaden and challenge the scope of work and operational roles throughout an organization. In doing so, the article defines four perspectives on the integration of predictive analytics into organizational safety practice: the programmatic perspective, the technological perspective, the sociocultural perspective, and knowledge-organization perspective. The article posits a four-level, organizational knowledge-skills-abilities matrix for analytics integration, indicating key organizational capacities needed for each area. The work shows the benefits of organizational alignment, clear stakeholder categorization, and the ability to predict future safety performance.

IoT data analytics architecture for smart healthcare using RFID and WSN

  • Ogur, Nur Banu;Al-Hubaishi, Mohammed;Ceken, Celal
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.135-146
    • /
    • 2022
  • The importance of big data analytics has become apparent with the increasing volume of data on the Internet. The amount of data will increase even more with the widespread use of Internet of Things (IoT). One of the most important application areas of the IoT is healthcare. This study introduces new real-time data analytics architecture for an IoT-based smart healthcare system, which consists of a wireless sensor network and a radio-frequency identification technology in a vertical domain. The proposed platform also includes high-performance data analytics tools, such as Kafka, Spark, MongoDB, and NodeJS, in a horizontal domain. To investigate the performance of the system developed, a diagnosis of Wolff-Parkinson-White syndrome by logistic regression is discussed. The results show that the proposed IoT data analytics system can successfully process health data in real-time with an accuracy rate of 95% and it can handle large volumes of data. The developed system also communicates with a riverbed modeler using Transmission Control Protocol (TCP) to model any IoT-enabling technology. Therefore, the proposed architecture can be used as a time-saving experimental environment for any IoT-based system.

Influence of Big Data Analytics Capability on Innovation and Performance in the Hotel Industry in Malaysia

  • Muhamad Luqman, KHALIL;Norzalita Abd, AZIZ
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.10 no.2
    • /
    • pp.109-121
    • /
    • 2023
  • This study aims to address the literature gap by examining the direct relationship between big data analytics capability, marketing innovation, and organizational innovations. Additionally, this study would examine big data analytics capability as the antecedent for both innovation types and how these relationships influence firm performance. The research model is developed based on the integration of resource-based view and knowledge-based view theories. The quantitative method is used as the research methodology for this study. Based on a purposive sampling method, a total of 115 questionnaires were obtained from managers in star-rated hotels located in Malaysia. Partial least square structural equation modeling (PLS-SEM) is utilized for the data analysis. The result shows that big data analytics capability positively affects marketing and organizational innovations. The findings show that big data analytics capability and organizational innovation positively influence firm performance. Nonetheless, the result revealed that marketing innovation is not positively related to firm performance. The findings also indicate to hotel managers the importance of big data analytic capability and the resources required to build and develop this capability. The contributions from this study enrich the literature on big data and innovation, which is particularly limited in the hospitality and tourism context.

The Impact of Business Intelligence on the Relationship Between Big Data Analytics and Financial Performance: An Empirical Study in Egypt

  • Mostafa Zaki, HUSSEIN;Samhi Abdelaty, DIFALLA;Hussein Abdelaal, SALEM
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.10 no.2
    • /
    • pp.15-27
    • /
    • 2023
  • The purpose of this research is to investigate the impact of Business Intelligence (BI) on the relation between Big Data Analytics (BDA) and Financial Performance (FP), at the beginning we reviewed the academic accounting and finance literature to develop the theoretical framework of business intelligence, big data and financial performance in terms of definition, motivations and theories, then we conduct an empirical analysis based on questionnaire-base survey data collected. The researchers identified the study population in the joint-stock companies listed on the Egyptian Stock Exchange and operating in the sectors and activities related to modern technologies in information systems, big data analytics, and business intelligence, in addition to the auditing offices that review the financial reports of these companies, and The sector closest to the research objective is the communications, media, and information technology sector, where the survey list was distributed among the sample companies with (15) lists for each company, and (15) lists for each audit office, so that the total sample becomes (120) individuals (with a response rate 83.3%), The results show, First, Big data analytics significantly affect organizations' financial performance, second, Business intelligence mediates (partial) the relationship between big data analytics and financial performance.

A Business Application of the Business Intelligence and the Big Data Analytics (비즈니스 인텔리전스와 빅데이터 분석의 비즈니스 응용)

  • Lee, Ki-Kwang;Kim, Tae-Hwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.84-90
    • /
    • 2019
  • Lately, there have been tremendous shifts in the business technology landscape. Advances in cloud technology and mobile applications have enabled businesses and IT users to interact in entirely new ways. One of the most rapidly growing technologies in this sphere is business intelligence, and associated concepts such as big data and data mining. BI is the collection of systems and products that have been implemented in various business practices, but not the information derived from the systems and products. On the other hand, big data has come to mean various things to different people. When comparing big data vs business intelligence, some people use the term big data when referring to the size of data, while others use the term in reference to specific approaches to analytics. As the volume of data grows, businesses will also ask more questions to better understand the data analytics process. As a result, the analysis team will have to keep up with the rising demands on the infrastructure that supports analytics applications brought by these additional requirements. It's also a good way to ascertain if we have built a valuable analysis system. Thus, Business Intelligence and Big Data technology can be adapted to the business' changing requirements, if they prove to be highly valuable to business environment.

Education and Training of Product Data Analytics using Product Data Management System (PDM 시스템을 활용한 Product Data Analytics 교육 훈련)

  • Do, Namchul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.1
    • /
    • pp.80-88
    • /
    • 2017
  • Product data analytics (PDA) is a data-driven analysis method that uses product data management (PDM) databases as its operational data. It aims to understand and evaluate product development processes indirectly through the analysis of product data from the PDM databases. To educate and train PDA efficiently, this study proposed an approach that employs courses for both product development and PDA in a class. The participant group for product development provides a PDM database as a result of their product development activities, and the other group for PDA analyses the PDM database and provides analysis result to the product development group who can explain causes of the result. The collaboration between the two groups can enhance the efficiency of the education and training course on PDA. This study also includes an application example of the approach to a graduate class on PDA and discussion of its result.

CANVAS: A Cloud-based Research Data Analytics Environment and System

  • Kim, Seongchan;Song, Sa-kwang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.117-124
    • /
    • 2021
  • In this paper, we propose CANVAS (Creative ANalytics enVironment And System), an analytics system of the National Research Data Platform (DataON). CANVAS is a personalized analytics cloud service for researchers who need computing resources and tools for research data analysis. CANVAS is designed in consideration of scalability based on micro-services architecture and was built on top of open-source software such as eGovernment Standard framework (Spring framework), Kubernetes, and JupyterLab. The built system provides personalized analytics environments to multiple users, enabling high-speed and large-capacity analysis by utilizing high-performance cloud infrastructure (CPU/GPU). More specifically, modeling and processing data is possible in JupyterLab or GUI workflow environment. Since CANVAS shares data with DataON, the research data registered by users or downloaded data can be directly processed in the CANVAS. As a result, CANVAS enhances the convenience of data analysis for users in DataON and contributes to the sharing and utilization of research data.

From Machine Learning Algorithms to Superior Customer Experience: Business Implications of Machine Learning-Driven Data Analytics in the Hospitality Industry

  • Egor Cherenkov;Vlad Benga;Minwoo Lee;Neil Nandwani;Kenan Raguin;Marie Clementine Sueur;Guohao Sun
    • Journal of Smart Tourism
    • /
    • v.4 no.2
    • /
    • pp.5-14
    • /
    • 2024
  • This study explores the transformative potential of machine learning (ML) and ML-driven data analytics in the hospitality industry. It provides a comprehensive overview of this emerging method, from explaining ML's origins to introducing the evolution of ML-driven data analytics in the hospitality industry. The present study emphasizes the shift embodied in ML, moving from explicit programming towards a self-learning, adaptive approach refined over time through big data. Meanwhile, social media analytics has progressed from simplistic metrics deriving nuanced qualitative insights into consumer behavior as an industry-specific example. Additionally, this study explores innovative applications of these innovative technologies in the hospitality sector, whether in demand forecasting, personalized marketing, predictive maintenance, etc. The study also emphasizes the integration of ML and social media analytics, discussing the implications like enhanced customer personalization, real-time decision-making capabilities, optimized marketing campaigns, and improved fraud detection. In conclusion, ML-driven hospitality data analytics have become indispensable in the strategic and operation machinery of contemporary hospitality businesses. It projects these technologies' continued significance in propelling data-centric advancements across the industry.

Facilitating Conditions in Adopting Big Data Analytics at Medical Aid Organizations in South Africa

  • VELA, Junior Vela;SUBRAMANIAM, Prabhakar Rontala;OFUSORI, Lizzy Oluwatoyin
    • The Journal of Industrial Distribution & Business
    • /
    • v.13 no.11
    • /
    • pp.1-10
    • /
    • 2022
  • Purpose: This study measures the influence of facilitating conditions on employees' attitudes towards the adoption of big data analytics by selected medical aid organizations in Durban. In the health care sector, there are various sources of big data such as patients' medical records, medical examination results, and pharmacy prescriptions. Several organizations take the benefits of big data to improve their performance and productivity. Research design, data, and methodology: A survey research strategy was conducted on some selected medical aid organizations. A non-probability sampling and the purposive sampling technique were adopted in this study. The collected data was analysed using version 23 of Statistical Package for Social Science (SPSS) Results: the results show that the "facilitating conditions" have a positive influence on employees' attitudes in the adoption of big data analytics Conclusions: The findings of this study provide empirical and scientific contributions of the facilitating conditions issues regarding employee attitudes toward big data analytics adoption. The findings of this study will add to the body of knowledge in this field and raise awareness, which will spur further research, particularly in developing countries.

Learning Activities and Learning Behaviors for Learning Analytics in e-Learning Environments

  • Jin, Sung-Hee;SUNG, Eunmo;Kim, Younyoung
    • Educational Technology International
    • /
    • v.17 no.2
    • /
    • pp.175-202
    • /
    • 2016
  • Most of the learning analytics research has investigated how quantitative data can affect learning. The information that is provided to learners has been determined by teachers and researchers based on reviews of the previous literature. However, there have been few studies on standard learning activities that are performed in e-learning environments independent of the teaching methods or on learning behavior data that are obtained through learning analytics. This study aims to explore the general learning activities and learning behaviors that can be used in the analysis of learning data. Learning activities and learning behavior are defined in conjunction with the concept of learning analytics to identify the differences between teachers' and learners' learning activities. Learning activities and learning behavior were verified by an expert panel review in an e-learning environment. The differences between instructors and learners in their usage were analyzed using a survey method. As results, 8 learning activities and 29 learning behaviors were validated. The Research has shown that instructors' degree of utilization is higher than that of the learners.