• 제목/요약/키워드: damping treatments

검색결과 41건 처리시간 0.027초

자동차 도어의 진동 저감을 위한 제진재 설계에 관한 연구 (A Study on Damping Material Design for Vibration Suppression of the Automotive Door)

  • 정명근;김찬묵;사종성;박종오
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.1072-1076
    • /
    • 2004
  • In automotive industry, all passenger vehicles are treated with damping materials to reduce structure borne noise. The effectiveness of damping treatments depends upon design parameters such as choice of damping materials. locations and size of the treatment. Generally, the CAE method uses modal strain-energy information of the bare structural panels to identify flexible regions, which in turn facilitates optimization of damping treatments with respect to location and size. This paper proposes a design of the damping material with a CAE(Computer Aided Engineering) methodology based on finite element analysis and DOE(Design Of Experiments) to optimize damping treatments.

  • PDF

구조 감쇠 처리된 원통형 복합적층 패널의 플러터 해석 (Supersonic Flutter Analysis of Cylindrical Composite Panels with Structural Damping Treatments)

  • 신원호;오일권;이인
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.131-134
    • /
    • 2002
  • Supersonic flutter analysis of cylindrical composite panels with structural damping treatments has been performed using the finite element method based on the layerwise shell theory. The natural frequencies and loss factors of cylindrical viscoelastic composites are computed considering the effects of transversely shear deformation. The panel flutter of cylindrical composite panels is analyzed considering structural damping effect. Various damping characteristics for unconstrained layer damping, constrained layer damping, and symmetrically co-cured sandwich laminates are compared with those of an original base panel in view of aeroelastic stabilities.

  • PDF

완전층별변위이론에 근거한 표면감쇠처리된 원통형 복합적층 패널의 동적특성 (Dynamic Characteristics of Cylindrical Composite Panels With Surface Damping Treatments Using Full Layerwise Theory)

  • 성태홍;이인;오일권
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.29-32
    • /
    • 2005
  • Based on the full layerwise displacement shell theory, vibration and damping characteristics of cylindrical sandwich panels are investigated. The transverse shear deformation and the normal strain are fully taken into account for structural damping modelling. Modal damping factors and frequency response functions are analyzed for various structural parameters of cylindrical sandwich beams. Present results shows that full layerwise theory can accurately predict vibration and damping characteristics of cylindrical composite panels with surface damping treatments and constrained layer damping. The viscoelastic materials depending on elevated temperature environment and exciting frequencies can be fully considered.

  • PDF

구속 감쇠 기법을 이용한 로터시스템 구조 감쇠 증대

  • 김도형;고은희;송근웅;김승호
    • 항공우주기술
    • /
    • 제4권1호
    • /
    • pp.9-17
    • /
    • 2005
  • 복합재 무힌지 로터시스템의 구조 감쇠 증대와 공탄성 안정성 향상에 대한 연구를 수행하였다. 무힌지 로터시스템의 구조 감쇠 증대를 위해 플렉셔에 구속 감쇠 처리 기법을 적용하였다. 점탄성 층과 구속 층이 부착된 플렉셔 구조물에 대한 모드해석은 MSC/NASTRAN을 이용하였고, 실험을 통해 구속 감쇠의 효과를 검증하였다. 구속 감쇠 처리된 복합재 플렉셔를 무힌지 로터시스템에 적용하여 제자리 비행 조건에서의 시험을 통해 in-plane 감쇠 증대를 고찰하였다.

  • PDF

Cu-55%Mn 합금의 진동감쇠능에 미치는 각종 열처리의 영향 (Effects of Different Heat Treatments on Damping Capacity of Cu-55%Mn Alloy)

  • 정태신;전중환;이영국;최종술
    • 열처리공학회지
    • /
    • 제11권1호
    • /
    • pp.27-34
    • /
    • 1998
  • Effects of different heat treatments on microstructure and damping capacity of Cu-55%Mn alloy were investigated to find an optimum heat treatment condition for a maximum damping capacity. The alloy showed the high level of damping capacity in case of the aging at 375 and $400^{\circ}C$. This is ascribed to the FCC${\rightarrow}$FCT martensitic transformation and microstructural changes from mottled to tweed band type. The damping capacity had a maximum value of 0.33 in logarithmic decrement when the alloy was aged at $375^{\circ}C$ for 14 hours followed by 20 times of thermal cycling between room temperature and $250^{\circ}C$. The refinement of tweed structure by thermal cycling is thought to be responsible for the highest damping capacity.

  • PDF

점탄성 재료를 이용한 무힌지 로터 감쇠 증대 (Damping Enhancement of Hingeless Rotor System Using Viscoelastic Material)

  • 김도형;고은희;송근웅;이욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.637-640
    • /
    • 2004
  • Structural damping enhancement of composite flexures and aeroelastic stability of a hingeless rotor system are investigated. Constrained layer damping (CLD) treatments are applied in order to increase structural damping of flexures. Material damping property of viscoelastic layer is modelled as complex modulus. Modal analysis of composite flexures with attached viscoelastic layers and constraining layers are performed using MSC/NASTRAN and the effects of CLD treatments are verified with the modal test results. The composite flexures with CLD are applied to a 4-bladed, 2-meter diameter, Froude-scaled, soft-in-plane hingeless rotor system. The aeroelastic stability is tested at hovering condition and the effects of CLD are investigated. It is shown that the CLD treatment effectively enhance the aeroelastic stability at hover.

  • PDF

Comparisons of smart damping treatments based on FEM modeling of electromechanical impedance

  • Providakis, C.P.;Kontoni, D.P.N.;Voutetaki, M.E.;Stavroulaki, M.E.
    • Smart Structures and Systems
    • /
    • 제4권1호
    • /
    • pp.35-46
    • /
    • 2008
  • In this paper the authors address the problem of comparing two different smart damping techniques using the numerical modelling of the electro-mechanical impedance for plate structures partially treated with active constrained layer damping treatments. The paper summarizes the modelling procedures including a finite element formulation capable of accounting for the observed behaviour. The example used is a smart cantilever plate structure containing a viscoelastic material (VEM) layer sandwiched between a piezoelectric constrained layer and the host vibrating plate. Comparisons are made between active constrained layer and active damping only and based on the resonance frequency amplitudes of the electrical admittance numerically evaluated at the surface of the piezoelectric model of the vibrating structure.

APPLICATION OF VISCOELASTIC DAMPING FOR PASSIVE VIBRATION CONTROL IN AUTOMOTIVE ROOF USING EQUIVALENT PROPERTIES

  • LEE K. H.;KIM C. M.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.607-613
    • /
    • 2005
  • In this study, a simplified approach to modeling the dynamic characteristics of passive constrained layer damping treatments in finite element models is presented. The basic concept is to represent multi-layered composite structures using an equivalent single layer. The equivalent properties are obtained by using the RKU (Ross, Kerwin and Ungar) equations. Comparisons are given between results obtained by the dynamic analysis of the simple models implemented in MSC/NASTRAN and by test measurements. Surface damping treatments are applied to automotive panels as well as simple structures. Using the proposed equivalent modeling technique, higher computational efficiency for the damped composite structures has been obtained.

OPTIMAL DESIGN OF THE MULTIPLAYER DAMPING MATERIALS USING EQUIVALENT MODELING

  • Hur, D.J.;Lee, D.C.
    • International Journal of Automotive Technology
    • /
    • 제5권3호
    • /
    • pp.189-194
    • /
    • 2004
  • The viscoelastic layer material is widely used to control the noise and vibration characteristics of the panel structure. This paper describes the design technology of the effective vibration damping treatment using the concept of the equivalent parameter of viscoelastic layer materials. Applying the equivalent parameter concepts based on theories of shell, it is possible to simulate the finite element analysis of damping layer panel treatments on the vibration characteristics of the structure. And it is achieved the reduced computational cost and the optimal design of topological distribution for the reduction of vibration effect.

차량루프의 진동저감을 위한 수동구속감쇠처리의 위치 최적화 (An Optimal Placement of passive Constrained Layer Damping Treatment for Vibration Suppression of Automotive Roof)

  • 이기화;김찬묵;강영규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.349-353
    • /
    • 2004
  • A study on optimal placement of constrained layer damping treatment for vibration control of automotive panels is presented. The effectiveness of damping treatment depends upon design parameters such as choice of damping materials, locations and size of the treatment. This paper proposes a CAE (Computer Aided Engineering) methodology based on finite element analysis to optimize damping treatment. From the equivalent modeling technique, it is found that the best damping performance occurs as the viscoelstic patch is placed by means of the modal strain energy method of bare structural panels to identify flexible regions, which in turn facilitates optimizations of damping treatment with respect to location and size. Different configurations of partially applied damping layer treatment have been analyzed for their effectiveness in realizing maximum system damping with minimum mass of the applied damping material. Moreover, simulated frequency response function of the automotive roof with and without damping treatments are compared, which show the benefits of applying damping treatment. Finally, the optimized damping treatment configuration is validated by comparing the locations and the size of the treatment with that of an experimental modal test conducted on roof compartment.

  • PDF