• Title/Summary/Keyword: damping ratios

Search Result 378, Processing Time 0.024 seconds

Experimental Vibration Analysis for Viscoelastically Damped Circular Cylindrical Shell Using Nonlinear Least Square Method (비선형 최소제곱법을 이용한 점탄성 감쇠를 갖는 원통셀의 실험진동해석)

  • Min, Cheon-Hong;Park, Han-Il;Bae, Soo-Ryong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.41-46
    • /
    • 2008
  • It is a recent trend for advanced ships and submarines to incorporate composite structures with viscoelastically damping material. Much research has been done on curve-fitting techniquesto identify vibration characteristic parameters such as natural frequencies, modal damping ratios, and mode shapes of the composite structure. In this study, an advanced technique for accurately determining vibration characteristic of a circular cylindrical shell-attached viscoelastically damping material is used, based on a multi-degree of freedom (MDOF) curve-fitting method. First, an initial value is obtained by using a linear least square method. Next, using the initial value, the exact modal parameters of the composite circular cylindrical shell are obtained by using a nonlinear least square method. Results show computation time is greatly decreased and accurate results are obtained by the MDOF curve-fitting method.

Parametric study of pendulum type dynamic vibration absorber for controlling vibration of a two DOF structure

  • Bur, Mulyadi;Son, Lovely;Rusli, Meifal;Okuma, Masaaki
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.51-58
    • /
    • 2017
  • Passive dynamic vibration absorbers (DVAs) are often used to suppress the excessive vibration of a large structure due to their simple construction and low maintenance cost compared to other vibration control techniques. A new type of passive DVA consists of two pendulums connected with spring and dashpot element is investigated. This research evaluated the performance of the DVA in reducing the vibration response of a two degree of freedom shear structure. A model for the two DOF vibration system with the absorber is developed. The nominal absorber parameters are calculated using a Genetic Algorithm(GA) procedure. A parametric study is performed to evaluate the effect of each absorber parameter on performance. The simulation results show that the optimum condition for the absorber frequencies and damping ratios is mainly affected by pendulum length, mass, and the damping coefficient of the pendulum's hinge joint. An experimental model validates the theoretical results. The simulation and experimental results show that the proposed technique is able be used as an effective alternative solution for reducing the vibration response of a multi degree of freedom vibration system.

The acrosswind response of the downwind prism in a twin-prism system with a staggered arrangement

  • Fang, Fuh-Min;Chung, Cheng-Yang;Li, Yi-Chao;Liu, Wen-Chin;Lei, Perng-Kwei
    • Wind and Structures
    • /
    • v.17 no.3
    • /
    • pp.245-262
    • /
    • 2013
  • The flow interaction between two identical neighboring twin square prisms in a staggered arrangement in an open terrain was investigated experimentally. The downwind prism was mounted on a rigid-aeroelastic setup in an open-terrain boundary layer flow to measure its acrosswind root-mean-square responses and aerodynamic damping ratios. By varying the relative location of the upwind prism and the Scruton number associated with the downwind prism, the acrosswind aeroelastic behavior of the downwind prism was analyzed and compared to that of an isolated one. Results showed that the acrosswind root-mean-square response of the downwind prism could be either suppressed or enhanced by the wake flow produced by the neighboring upwind prism. Besides the assessment of the wake effect of the downwind prism, finally, regressed relationships were presented to describe the variation of the aerodynamic damping ratio so as to predict its acrosswind fluctuating response numerically.

Dynamic identification of soil-structure system designed by direct displacement-based method for different site conditions

  • Mahmoudabadi, Vahidreza;Bahar, Omid;Jafari, Mohammad Kazem;Safiey, Amir
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.445-458
    • /
    • 2019
  • This study mainly aims to assess the performance of soil-structure systems designed by direct displacement-based method coupled with strong column-weak beam design concept through various system identification techniques under strong ground motions. To this end, various system identification methods are employed to evaluate the dynamic characteristics of a structure (i.e., modal frequency, system damping, mode shapes, and plastic hinge formation pattern) under a strong seismic excitation considering soil-structure interaction for different site conditions as specified by ASCE 7-10. The scope of the study narrowed down to the code-complying low- to high-rise steel moment resisting frames with various heights (4, 8, 12, 16-story). The comparison of the result of soil-structure systems with fix-based support condition indicates that the modal frequencies of these systems are highly influenced by the structure heights, specifically for the softer soils. This trend is more significant for higher modes of the system which can considerably dominate the response of structures in which the higher modes have more contribution in dynamic response. Amongst all studied modes of the vibration, the damping ratio estimated for the first mode is relatively the closet to the initial assumed damping ratios. Moreover, it was found that fewer plastic hinges are developed in the structure of soil-structure systems with a softer soil which contradicts the general expectation of higher damageability of such structural systems.

Use of TLD and MTLD for Control of Wind-Induced Vibration of Tall Buildings

  • Kim, Young-Moon;You, Ki-Pyo;Ko, Nag-Ho;Yoon, Sung-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1346-1354
    • /
    • 2006
  • Excessive acceleration experienced at the top floors in a building during wind storms affect the serviceability of the building with respect to occupant comfort and discomfort. Tuned liquid damper (TLD) and multiple tuned liquid damper (MTLD), which are passive control devices consisting of a rigid tank filled with liquid, are used to suppress vibration of structures. These TLD and MTLD offer several potential advantages-low costs, easy installation in existing structures and effectiveness even for small-amplitude vibrations. This study carries out a theoretical estimation of the most effective damping ratios that can be achieved by TLD and MTLD. Damping by TLD an MTLD reduced the frequency response of high-rise buildings by approximately 40% in urban and suburban areas.

An Experimental study to Improving the Sound Transmission Loss of Honeycomb sandwich Plates (허니컴 샌드위치판의 투과손실 개선에 관한 실험적 연구)

  • 유영훈;양보석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.92-99
    • /
    • 1998
  • The sound insulation capacity of honeycomb sandwich plates which have relatively higher strength ratios to weight is poorer than those of uniform and another sandwich plates. Therefore, improvement of the sound insulation capacity of the honeycomb sandwich plate which has a meritof lightness is required to use it in automobile and rapid rail road industries. In this study, to improving the sound insulation capacity of the honeycomb sandwich plate, the sound transmission loss of the structure is experimentally investigated by adding a viscoelastic damping layer, The effective add position and thickness of the layer were investigated from the viewpoints of both sound transmission loss and improved sound transmission loss over the frequency range from 800Hz to 10kHz.

  • PDF

Radiated Noise of Helical Gear-plate System (헬리컬기어-플레이트 시스템의 방사소음)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1042-1048
    • /
    • 2007
  • This work analytically investigated the radiated noise of a helical gear-housing system due to the excitation of helical gears. The helical gears were modeled as a 12-degree of freedom mass-spring-damper system; the shaft was modeled as a rod, a beam, and a torsional shaft; and the gear housing was modeled as a clamped circular plate with viscous damping. The modeling of this system used transfer matrices for helical gears, shafts, and bearings. Damping for both the bearings and the plate were obtained by modal testing. For the evaluation of noise, sound pressure from the plate due to the force and the moment in both radial and tangential directions was analytically derived by the Rayleigh integral. The analytical derivation and parameters from the experiment were applied to an analysis of noise for the two sets of helical gears with differing gear ratios. The analysis showed that the moment excitation in both helical gears contributed more to the noise of the plate than axial force excitation.

  • PDF

Structural Vibration Characteristics for an Outdoor Units Support of an Air-conditioner (에어컨 실외기 받침대의 구조진동 특성)

  • Ryu, Bong-Jo;Song, Seon-Ho;Lim, Chae-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.215-217
    • /
    • 2008
  • This paper deals with the structural vibration characteristics for an outdoor units support of an air-conditioner. Even though main noise sources are compressor noise and fluid noise which is caused by the fan, the structural modification of the outdoor units support may affect vibration and noise. In this paper, damping ratios for two kinds of an outdoor units support of an air-conditioner are measured through the modal testing. In order to reduce the structural borne noise due to an outdoor units support of an air-conditioner, four kinds of rubber materials are selected and tested.

  • PDF

Modal Parameter Extraction Using a Digital Camera (디지털 카메라를 이용한 구조물의 동특성 추출)

  • Kim, Byeong-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.61-68
    • /
    • 2008
  • A set of modal parameters of a stay-cable have been extracted from a moving picture captured by a digital camera supported by shaking hands. It is hard to identify the center of targets attached on the cable surface from the blurred cable motion image, because of the high speed motion of cable, low sampling frequency of camera, and the shaking effect of camera. This study proposes a multi-template matching algorithm to resolve such difficulties. In addition, a sensitivity-based system identification algorithm is introduced to extract the natural frequencies and damping ratios from the ambient cable vibration data. Three sets of vibration tests are conducted to examine the validity of the proposed algorithms. The results show that the proposed technique is pretty feasible for extracting modal parameters from the severely shaking motion pictures.

  • PDF

Modeling of Beam Structures from Modal Parameters (모달 파라미터를 이용한 보 구조물의 모델링)

  • Hwang, Woo-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.519-522
    • /
    • 2006
  • Accurate modeling of a dynamic system from experimental data is the bases for the model updating or heath monitoring of the system. Modal analysis or modal test is a routine process to get the modal parameters of a dynamic system. The modal parameters include the natural frequencies, damping ratios and mode shapes. This paper presents a new method that can derive the equations of motion for a dynamic system from the modal parameters obtained by the modal analysis or modal test. The present method based on the relation between the eigenvalues and eigenvectors of the state space equation derives the mass, damping and stiffness matrices of the system. The modeling of a cantilevered beam from modal parameters is an example to prove the efficiency and accuracy of the present method. Using the lateral displacements only, not the rotations, gives limited information for the system. The numerical verification up to now gives reasonable results and the verification with the test data is scheduled.

  • PDF