• 제목/요약/키워드: damping properties

검색결과 703건 처리시간 0.037초

Effects of soil-structure interaction and variability of soil properties on seismic performance of reinforced concrete structures

  • Mekki, Mohammed;Hemsas, Miloud;Zoutat, Meriem;Elachachi, Sidi M.
    • Earthquakes and Structures
    • /
    • 제22권3호
    • /
    • pp.219-230
    • /
    • 2022
  • Knowing that the variability of soil properties is an important source of uncertainty in geotechnical analyses, we will study in this paper the effect of this variability on the seismic response of a structure within the framework of Soil Structure Interaction (SSI). We use the proposed and developed model (N2-ISS, Mekki et al., 2014). This approach is based on an extension of the N2 method by determining the capacity curve of the fixed base system oscillating mainly in the first mode, then modified to obtain the capacity curve of the system on a flexible basis using the concept of the equivalent nonlinear oscillator. The properties of the soil that we are interested in this paper will be the shear wave velocity and the soil damping. These parameters will be modeled at first, as independent random fields, then, the two parameters will be correlated. The results obtained showed the importance of the use of random field in the study of SSI systems. The variability of soil damping and shear wave velocity introduces significant uncertainty not only in the evaluation of the damping of the soil-structure system but also in the estimation of the displacement of the structure and the base-shear force.

역변태 오스테나이트와 가공유기 마르텐사이트의 2상 혼합조직을 갖는 스테인리스강의 기계적 성질과 감쇠능 (Relationship Between Mechanical Properties and Damping Capacity in Stainless Steel with Two Phases of Reversed Austenite and Deformation Induced Martensite)

  • 남궁원;정목환;이향백;김재남;강창룡
    • 동력기계공학회지
    • /
    • 제17권2호
    • /
    • pp.114-120
    • /
    • 2013
  • This study was carried out to investigate the relationship between mechanical properties and damping capacity in high manganese austenitic stainless steel with two phase mixed structure of reversed austenite and deformation induced martensite. Reversed austenite of ultra-fine grain size less than $0.3{\mu}m$ was obtained by reversion treatment. Two phase structure of deformation induced martensite and reversed austenite was obtained by annealing treatment at range of $500^{\circ}C{\sim}700^{\circ}C$ for various time in cold rolled high manganese austenite stainless steel. In stainless steel with two phase mixed structure of martensite and austenite, damping capacity decreased rapidly with the increasing hardness and strength. With the increasing elongation, damping capacity was increased rapidly and then, slowly increased.

Experimental and Finite Element Analysis of Free Vibration Behaviour of Graphene Oxide Incorporated Carbon Fiber/Epoxy Composite

  • Adak, Nitai Chandra;Uke, Kamalkishor Janardhanji;Kuila, Tapas;Samanta, Pranab;Lee, Joong Hee
    • Composites Research
    • /
    • 제31권6호
    • /
    • pp.311-316
    • /
    • 2018
  • In the present study, the effect of GO in damping capacity of CF/epoxy laminates was studied via free vibration analysis. The composite laminates were manufactured by using vacuum assisted resin transfer molding technique. The damping properties of the prepared hybrid composites were determined in terms of natural frequency and damping ratio in free vibration test. The foremost aspire of this investigation was to compare the vibration properties i.e. natural frequency and modal damping of the prepared composites with the numerical results. The numerical study was carried out via FEA using $ANSYS^{TM}$ workbench software. The parametric study of the numerical models was also studied considering the beam free length and the beam thickness. It was found that the incorporation of GO enhanced the damping capacity of the composite and the variation of natural frequencies in mode1varied by 2-5% compared to the experimental study.

Damping updating of a building structure installed with an MR damper

  • Woo, Sung-Sik;Lee, Sang-Hyun
    • Smart Structures and Systems
    • /
    • 제12권6호
    • /
    • pp.695-705
    • /
    • 2013
  • The purpose of this paper is to identify through experiments the finite element (FE) model of a building structure using a magnetorheological (MR) fluid damper. The FE model based system identification (FEBSI) technique evaluates the control performance of an MR damper that has nonlinear characteristics as equivalent linear properties such as mass, stiffness, and damping. The Bingham and Bouc-Wen models were used for modeling the MR damper and the equivalent damping increased by the MR damper was predicted by applying an equivalent linearization technique. Experimental results indicate that the predicted equivalent damping matches well with the experimentally obtained damping.

충격 흡수기의 동적거동 해석 프로그램을 이용한 각 파라미터가 댐핑력에 미치는 영향 조사 (An Investigation into the Effect of Each Parameter of S/A on the Damping Force Using Dynamic Behaviour Analysis P/G)

  • 박재우;신상윤;주동우;이시복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.371-376
    • /
    • 1996
  • The damping force of shock absorber in an automobile is determined by the components which construct the S/A. In this study we investigate the individual effect of these components on damping force. In addition, opening of important valve doling compression and tension cycle due to up-down reciprocation movement is also researched. Thus we are to strictly control the properties and tolerance of components having important effects on tile damping force and to produce S/A of better quality.

  • PDF

충격 흡수기의 동적거동 해석 프로그램을 이용한 각 파라미터가 감쇠력에 미치는 영향 조사 (An Investigation into the Effect of Each Parameter on the Damping Forces Using Dynamic Behaviour Analysis P/G of S/A)

  • Park, J.W.;Shin, S.Y.;Lee, S.B.
    • 한국정밀공학회지
    • /
    • 제14권10호
    • /
    • pp.44-49
    • /
    • 1997
  • The damping force is determined by four valves and the components which consist of the shock absorber for vehicle. In this study it is investigated the individual effects of four valves and these components on damping forces using dynamic behaviour analysis program of the shock absorber. In addition, opening of main valves are researched during compression and tension cycle due to up- down reciprocation movement of piston. We are to strictly control the properties and tolerance of componenets having important effects on the damping force. Thus we are intended to produce shock absorber of better quality.

  • PDF

Fe-Al-Mn 합금의 진동감쇠능 및 인장성질에 미치는 미세조직의 영향 (Effect of Microstructure on the Damping Capacity and Tensile Properties of Fe-Al-Mn Alloys)

  • 손동욱;김재환;이종문;김익수;김한청;강창룡
    • 동력기계공학회지
    • /
    • 제8권4호
    • /
    • pp.31-37
    • /
    • 2004
  • The damping capacity and strength of Fe-2Al-26Mn alloys have been studied for the development of new materials with high strength and damping capacity. Particularly, the effect of ${\alpha}'\;and\;{\varepsilon}$ martensite phase, which constitutes the microstructure of cold rolled Fe-Al-Mn alloys, has been investigated in terms of the strength and damping capacity of the alloys. The damping capacity rises with increasing the degree of cold rolling and reveals the maximum value at 25% reduction. The damping capacity is strongly affected by the volume fraction of ${\varepsilon}$ martensite, while the other phases, such as ${\alpha}'$ martensite and austenite phase, actually exhibit little effect on damping capacity. Considering that tensile strength increases and elongation decreases with increasing the volume fraction of ${\alpha}'$ martensite, it is proved that tensile strength is mainly affected by the amount of ${\alpha}'$ martensite.

  • PDF

Damping Applications of Ferrofluids: A Review

  • Huang, Chuan;Yao, Jie;Zhang, Tianqi;Chen, Yibiao;Jiang, Huawei;Li, Decai
    • Journal of Magnetics
    • /
    • 제22권1호
    • /
    • pp.109-121
    • /
    • 2017
  • Ferrofluids are a special category of smart nanomaterials which shows normal liquid behavior coupled with superparamagnetic properties. One of the earliest and most prospective applications of ferrofluids is in damping, which has prominent advantages compared with conventional damping devices: simplicity, flexibility and reliability. This paper presents the basic principles that play a major role in the design of ferrofluid damping devices. The characteristics of typical ferrofluid damping devices including dampers, vibration isolators, and dynamic vibration absorbers are compared and summarized, and then recent progress of vibration energy harvesters based on ferrofluid is briefly described. Additionally, we proposed a novel ferrofluid dynamic vibration absorber in this paper, and its damping efficiency was verified with experiments. In the end, the critical problems and research directions of the ferrofluid damping technology in the future are raised.

복합구조 댐퍼를 적용한 고 감쇠 폴리머 콘크리트의 진동 특성에 관한 연구 (Vibrational Properties of High Damping Polymer Concrete with Hybrid Damper)

  • 김정진;최경석;위준우;석원균
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권5호
    • /
    • pp.135-142
    • /
    • 2020
  • 구조물을 구성하고 있는 콘크리트의 경우, 진동에 대한 감쇠성능이 작아, 구조물에서 발생하는 다양한 진동 문제를 해결하는데 어려움이 있으므로, 이러한 문제를 해결하기 위해, 최근 폴리머 콘크리트와 복합구조 댐퍼를 혼합하여 댐핑 성능을 크게 증가시킨 고 감쇠 시스템에 대한 연구가 활발히 진행되고 있다. 한편, 폴리머 콘크리트는 배합 시, 시멘트와 물을 사용하지 않아, 경화시간이 매우 짧고, 물리적 특성 및 동특성 등이 매우 우수하여 진동저감이 요구되는 건축구조물에의 폭넓은 활용이 기대되는 구조재료이며, 복합구조 댐퍼는 파이프 관 내부에 위치한 쇠구슬의 충돌에 따른 운동에너지 소산과 점성유체의 에너지 소산 방식을 통해 진동을 저감하는 구조시스템이라 할 수 있다. 본 연구에서는 폴리머 콘크리트와 복합구조 댐퍼의 물리적, 동적 특성을 일반 콘크리트와 비교하였는데, 물리적 특성의 경우, 폴리머 콘크리트가 탄성계수 및 강도 특성에서 상당히 우수한 결과를 보였으며, 특히 인장강도는 6.5~10배 이상 큰 차이를 보였다. 또한, 동적 특성의 경우도 폴리머 콘크리트는 일반 콘크리트 대비 동적강성은 25%, 감쇠비는 약 3배 정도 증가하였으며, 복합구조 댐퍼는 동적강성은 비슷한 경향을 보였지만 감쇠비는 3.5배 이상 증가하여, 일반 콘크리트보다 진동 감쇠성능이 우수한 것으로 나타났다.

에너지 흡수효율에 의한 철근콘크리트 구조물의 감쇠비 수정계수 결정 (Determination of Damping Modification Factor in RC Structures Due to Energy Absorption Efficiency)

  • 김장훈;좌동훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.161-166
    • /
    • 2002
  • The modification factor( k-factor) of equivalent damping ratio utilized in the current state-of-the-practice to account for the imperfection of reinforced concrete structures in hysteresis loop is investigated. From this, it is found that the current modification factor does not include the effect of cyclic loading, one of the important characteristic properties of earthquake loading. This could be taken into account by considering the energy absorption efficiency based on the cummulative plastic deformation. From the study, it is suggested that the current approach for the modification factor for the equivalent damping ratio should be reformed.

  • PDF