• Title/Summary/Keyword: damaged RC beam

Search Result 66, Processing Time 0.019 seconds

Behavior of repaired RAC beam-column joints using steel welded wire mesh jacketed with cement mortar

  • Marthong, Comingstarful
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.91-100
    • /
    • 2019
  • In this paper three damaged exterior RC beam-column joints made of recycled aggregate concrete (RAC) were repaired. The aim of the study was to restore back the lost capacity of the beam-column joint to the original state or more. A relatively cheap material locally available galvanized steel welded wire mesh (GSWWM) of grid size 25 mm was used to confine the damaged region and then jacketed with cement mortar. Repaired specimens were also subjected to similar cyclic displacement as those of unrepaired specimens. Seismic parameters such as load carrying capacity, ductility, energy dissipation, stiffness degradation etc. were analyzed. Results show that repaired specimens exhibited better seismic performance and hence the adopted repairing strategies could be considered as satisfactory. These findings would be helpful to the field engineers to adopt a suitable rapid and cost efficient repairing technique for restoring the damaged frame structural joints for post earthquake usage.

Strengthening of RC beams with prefabricated RC U cross-sectional plates

  • Demir, Ali;Tekin, Muhammed;Turali, Tezcan;Bagci, Muhiddin
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.673-685
    • /
    • 2014
  • The topic of this study is to strengthen cracked beams with prefabricated RC U cross-sectional plates. The damaged beams were repaired by epoxy based glue. The repaired beams were strengthened using prefabricated plates. The strengthening plates were bonded to the bottom and side faces of the beams by anchorage rods and epoxy. The strengthened beams were incrementally loaded up to maximum load capacities. The experimental results were satisfactory since the load carrying capacities of damaged beams were increased approximately 76% due to strengthening. It was observed that strengthening plates had a dominant effect on the performance of beams in terms of both the post-elastic strength enhancement and the ductility. The experimental program was supported by a three-dimensional nonlinear finite element analysis. The experimental results were compared with the results obtained from the beam modeled with ANSYS finite element program.

Strengthening Depth Effect in Externally Post-tensioning Shear Strengthening of Pre-cracked Reinforced Concrete Beam (사전균열이 발생한 철근콘크리트 보의 외적 포스트텐셔닝 전단보강에서 보강깊이의 효과)

  • Lee, Swoo-Heon;Shin, Kyung-Jae;Lee, Hee-Du
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.19-26
    • /
    • 2018
  • This paper presents the shear strengthening effect of externally post-tensioning (EPT) method using high-strength steel rod in pre-cracked reinforced concrete (RC) beams. Three- and four-point bending tests were performed on a total of 8 specimens by adjusting the strengthening depths in the deviator position of EPT. The effective strengthening depths were 435, 535, and 610 mm. The pre-loading up to about 2/3 of ultimate load capacity measured in unstrengthened RC beam were applied in the beam to be post-tensioned. The EPT method was then applied to the pre-damaged RC beams and re-loading was added until the end of the test. EPT restored deflections of 3 mm or more, which account for about 40% of deflection when the pre-loading was applied. The shear strengthening increases more than 3 times and 36~107% in terms of the stiffness and load-carrying capacity compared to unstrengthening RC beams. The increased load-carrying capacities of the post-tensioned beam with strengthening depths of 435 and 535 mm are almost the same as 36~61%, and those of 610 mm are 84~107%, which shows the greatest shear strengthening effect.

Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams

  • Abderezak, Rabahi;Rabia, Benferhat;Daouadji, Tahar Hassaine;Abbes, Boussad;Belkacem, Adim;Abbes, Fazilay
    • Advances in materials Research
    • /
    • v.7 no.2
    • /
    • pp.83-103
    • /
    • 2018
  • In this paper, the problem of interfacial stresses in damaged reinforced concrete beams strengthened with bonded prestressed functionally graded material plate and subjected to a uniformly distributed load, arbitrarily positioned single point load, or two symmetric point loads is developed using linear elastic theory. The adopted model takes into account the adherend shear deformations by assuming a linear shear stress through the depth of the damaged RC beam. This solution is intended for application to beams made of all kinds of materials bonded with a thin FGM plate. The results show that there exists a high concentration of both shear and normal stress at the ends of the functionally graded material plate, which might result in premature failure of the strengthening scheme at these locations. Finally, numerical comparisons between the existing solutions and the present new solution enable a clear appreciation of the effects of various parameters of the beams on the distributions of the interfacial stresses.

Investigations on the behaviour of corrosion damaged gravity load designed beam-column sub-assemblages under reverse cyclic loading

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.235-251
    • /
    • 2019
  • Corrosion of reinforcement is the greatest threat to the safety of existing reinforced concrete (RC) structures. Most of the olden structures are gravity load designed (GLD) and are seismically deficient. In present study, investigations are carried out on corrosion damaged GLD beam-column sub-assemblages under reverse cyclic loading, in order to evaluate their seismic performance. Five GLD beam-column sub-assemblage specimens comprising of i) One uncorroded ii) Two corroded iii) One uncorroded strengthened with steel bracket and haunch iv) One corroded strengthened with steel bracket and haunch, are tested under reverse cyclic loading. The performances of these specimens are assessed in terms of hysteretic behaviour, energy dissipation and strength degradation. It is noted that the nature of corrosion i.e. uniform or pitting corrosion and its location have significant influence on the behaviour of corrosion damaged GLD beam-column sub-assemblages. The corroded specimens with localised corrosion pits showed in-cyclic strength degradation. The study also reveals that external strengthening which provides an alternate force path but depends on the strength of the existing reinforcement bars, is able to mitigate the seismic risk of corroded GLD beam-column sub-assemblages to the level of control uncorroded GLD specimen.

Flexual Retrofitted Effect on Structurally Damaged Reinforced Concrete Beam Strengthened with Steel Plate (구조적 손상을 입은 철근 콘크리트 보의 강판 휨보강 효과)

  • Lim, Tae-Geoun;Kim, Sung-Yong;Shin, Chang-Hoon;Kim, Kyu-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.201-210
    • /
    • 2000
  • The Rehabilitation and repair of structurally deteriorated reinforced concrete structure become more necessary as time goes by. The goal of this study is that provide the data about flexural retrofitted effect of RC beam strengthened by Steel Plate. In order to provide the data, 6 specimens were manufactured and divided with standard specimen and damaged degree A, B, C. Division of damaged A, B, C is based on deflection and degree of crack. In the determination of deflection and degree of crack, we loaded standard specimen to failure under two-point bending to find yielding load and failure load, and then we found deflections and degree of crack that correspond to 75%, 100%, 105% of the yielding load of standard specimen respectively. When we are compared with standard specimen and strengthened specimens, we founded from the experimental results that flexural capacity of structurally damaged beam strengthened by Steel Plate incremented highly, ductility was decreased, and energy absorbtion capacity was almost same.

  • PDF

Experimental fragility functions for exterior deficient RC beam-column connections before and after rehabilitation

  • Marthong, Comingstarful;Deb, Sajal K.;Dutta, Anjan
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1291-1314
    • /
    • 2016
  • The paper presents the development of experimental fragility functions for exterior RC beam-column connections based on results obtained from extensive testing carried out in the present study. Three typical types of seismically deficient beam-column connections, which are commonly prevalent in Indian sub-continent, were considered. These specimens were tested under cyclic displacement histories with different characteristics to induce different damage states. Rehabilitation specific fragility functions for damaged specimens were developed considering drift angle as a demand parameter. Four probability distributions were fit to the data and suitability of each distribution was evaluated using standard statistical method. Specimens with different damage states were rehabilitated appropriately and rehabilitated specimens were tested under similar displacement histories. Fragility functions for rehabilitated specimens have also been developed following similar procedure. Comparison of fragility functions for both original and rehabilitated specimens for each rehabilitation method showed close agreement, which establishes the effectiveness of the adopted rehabilitation strategies and hence would provide confidence in field application.

Experimental investigation of a frame retrofitted with carbon textile reinforced mortar

  • Sinan M., Cansunar;Kadir, Guler
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.473-491
    • /
    • 2022
  • The research investigates experimentally the effect of confinement on structural behavior at the ends of beam-column in reinforced concrete (RC) frames. In the experimental study, five specimens consisting of 1/3-scaled RC frames having single-bay, representing the traditional deficiencies of existing buildings constructed without receiving proper engineering service is investigated. The RC frame specimens were produced to represent most of the existing buildings in Turkey that have damage potential. To decrease the probable damage to the existing buildings exposed to earthquakes, the carbon Textile Reinforced Mortar (TRM) strengthening technique (fully wrapping) was used on the ends of the RC frame elements to increase the energy dissipation and deformation capacity. The specimens were tested under reversed cyclic lateral loading with constant axial loads. They were constructed satisfying the weak column-strong beam condition and consisting of low-strength concrete, such as compressive strength of 15 MPa. The test results were compared and evaluated considering stiffness, strength, energy dissipation capacity, structural damping, ductility, and damage propagation in detail. Comprehensive investigations of these experimental results reveal that the strengthening of a brittle frame with fully-TRM wrapping with non-anchored was effective in increasing the stiffness, ductility, and energy dissipation capacities of RC bare frames. It was also observed that the frame-only-retrofitting with an infill wall is not enough to increase the ductility capacity. In this case, both the frame and infill wall must be retrofitted with TRM composite to increase the stiffness, lateral load carrying, ductility and energy dissipation capacities of RC frames. The presented strengthening method can be an alternative strengthening technique to enhance the seismic performance of existing or moderately damaged RC buildings.

Simulation study on CFRP strengthened reinforced concrete beam under four-point bending

  • Zhang, Dongliang;Wang, Qingyuan;Dong, Jiangfeng
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.407-421
    • /
    • 2016
  • This paper presents numerical modeling of the structural behavior of CFRP (carbon fiber reinforced polymer) strengthened RC (reinforced concrete) beams under four-point bending. Simulation of debonding at the CFRP-concrete interface was focused, as it is the main failure mode of CFRP strengthened RC beams. Here, cohesive layer was employed to model the onset of debonding, which further helps to describe the post debonding behavior of the CFRP strengthened RC beam. In addition, the XFEM approach was applied to investigate the effects of crack localization on strain field on CFRP sheet and rebar. The strains obtained from the XFEM correlate better to the test results than that from CDP (concrete damaged plasticity) model. However, there is a large discrepancy between the experimental and simulated loaddisplacement relationships, which is due to the simplification of concrete constitutive law.

A Study on the Flexural Behavior of the RC Beams Strengthened with Aramid Fiber Sheets. (AFS로 보강된 RC 보의 휨거동에 관한 연구)

  • Kim Ki Deok;Cheung Jin Hwan;Kim Seong Do;Cho Baik Soon;Jang Jun Hwan.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.169-172
    • /
    • 2005
  • Recently the repair of damaged reinforced concrete members by the external bonding of fiber-reinforced polymer laminates has received considerable attention. This paper investigates the flexural behaviors of beam strengthened with Aramid fiber sheets(AFS), and attempts to evaluate the flexural strength of such RC beams by the use of nonlinear flexural analysis because the application of the KCI strength method to strengthened beam is somewhat limited and the failure strain of AFS is overestimated in particular cases.

  • PDF