• Title/Summary/Keyword: damage scale model

Search Result 336, Processing Time 0.034 seconds

A Study on the Behavior of Floating Debris and Fresh Water Diffusion According to Discharge of Namgang Dam (남강댐방류에 따른 부유쓰레기의 거동 및 담수확산에 관한 연구)

  • Kim, Yeon-Joong;Yoon, Jung-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.37-46
    • /
    • 2009
  • Typhoon Rusa in 2002 was recorded as causing the biggest damage due to flood in our country. With the enormous damage to the land, the flood was totally discharged to the open sea. As a result, in the coastal area, the discharging of a river had a big influence in comparison to the scale of the coastal area, which suffered damaged due to the discharging of the river. As it cleared the land, the load was totally discharging into the sea, where it caused various problems due to its influence on the ecosystem. These included changes to the environment, like a difference in salinity and the inflow of a land load. Therefore, in this study, a Lagrangian particle tracking model was constructed using a flow model capable of solving the behavior of a river plume, supposing Sachon Bay. It is performed the research able to tendency-like valuation and reappearance about real event. The result was that the model was well approximated the sea area tendency and the river plume of the specific event.

A Numerical Study on the Thermo-mechanical Response of a Composite Beam Exposed to Fire

  • Pak, Hongrak;Kang, Moon Soo;Kang, Jun Won;Kee, Seong-Hoon;Choi, Byong-Jeong
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1177-1190
    • /
    • 2018
  • This study presents an analytical framework for estimating the thermo-mechanical behavior of a composite beam exposed to fire. The framework involves: a fire simulation from which the evolution of temperature on the structure surface is obtained; data transfer by an interface model, whereby the surface temperature is assigned to the finite element model of the structure for thermo-mechanical analysis; and nonlinear thermo-mechanical analysis for predicting the structural response under high temperatures. We use a plastic-damage model for calculating the response of concrete slabs, and propose a method to determine the stiffness degradation parameter of the plastic-damage model by a nonlinear regression of concrete cylinder test data. To validate simulation results, structural fire experiments have been performed on a real-scale steel-concrete composite beam using the fire load prescribed by ASTM E119 standard fire curve. The calculated evolution of deflection at the center of the beam shows good agreement with experimental results. The local test results as well as the effective plastic strain distribution and section rotation of the composite beam at elevated temperatures are also investigated.

Simulation of Debris Flow Deposit in Mt. Umyeon

  • Won, Sangyeon;Kim, Gihong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.507-516
    • /
    • 2015
  • Debris flow is a representative natural disaster in Korea and occurs frequently every year. Recently, it has caused considerable damage to property and considerable loss of life in both mountainous and urban regions. Therefore, It is necessary to estimate the scope of damage for a large area in order to predict the debris flow. A response model such as the random walk model(RWM) can be used as a useful tool instead of a physics-based numerical model. RWM is a probability model that simplifies both debris flows and sedimentation characteristics as a factor of slopes for a subjective site and represents a relatively simple calculation method compared to other debris flow behavior calculation models. Although RWM can be used to analyzing and predicting the scope of damage caused by a debris flow, input variables for terrain conditions are yet to be determined. In this study, optimal input variables were estimated using DEM generated from the Aerial Photograph and LiDAR data of Mt. Umyeon, Seoul, where a large-scale debris flow occurred in 2011. Further, the deposition volume resulting from the debris flow was predicted using the input variables for a specific area in which the deposition volume could not be calculated because of work restoration and the passage of time even though a debris flow occurred there. The accuracy of the model was verified by comparing the result of predicting the deposition volume in the debris flow with the result obtained from a debris flow behavior analysis model, Debris 2D.

An enhanced analytical calculation model based on sectional calculation using a 3D contour map of aerodynamic damping for vortex induced vibrations of wind turbine towers

  • Dimitrios Livanos;Ika Kurniawati;Marc Seidel;Joris Daamen;Frits Wenneker;Francesca Lupi;Rudiger Hoffer
    • Wind and Structures
    • /
    • v.38 no.6
    • /
    • pp.445-459
    • /
    • 2024
  • To model the aeroelasticity in vortex-induced vibrations (VIV) of slender tubular towers, this paper presents an approach where the aerodynamic damping distribution along the height of the structure is calculated not only as a function of the normalized lateral oscillation but also considering the local incoming wind velocity ratio to the critical velocity (velocity ratio). The three-dimensionality of aerodynamic damping depending on the tower's displacement and the velocity ratio has been observed in recent studies. A contour map model of aerodynamic damping is generated based on the forced vibration tests. A sectional calculation procedure based on the spectral method is developed by defining the aerodynamic damping locally at each increment of height. The proposed contour map model of aerodynamic damping and the sectional calculation procedure are validated with full-scale measurement data sets of a rotorless wind turbine tower, where good agreement between the prediction and measured values is obtained. The prediction of cross-wind response of the wind turbine tower is performed over a range of wind speeds which allows the estimation of resulting fatigue damage. The proposed model gives more realistic prediction in comparison to the approach included in current standards.

Assessment of whipping and springing on a large container vessel

  • Barhoumi, Mondher;Storhaug, Gaute
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.442-458
    • /
    • 2014
  • Wave induced vibrations increase the fatigue and extreme loading, but this is normally neglected in design. The industry view on this is changing. Wave induced vibrations are often divided into springing and whipping, and their relative contribution to fatigue and extreme loading varies depending on ship design. When it comes to displacement vessels, the contribution from whipping on fatigue and extreme loading is particularly high for certain container vessels. A large modern design container vessel with high bow flare angle and high service speed has been considered. The container vessel was equipped with a hull monitoring system from a recognized supplier of HMON systems. The vessel has been operating between Asia and Europe for a few years and valuable data has been collected. Also model tests have been carried out of this vessel to investigate fatigue and extreme loading, but model tests are often limited to head seas. For the full scale measurements, the correlation between stress data and wind data has been investigated. The wave and vibration damage are shown versus heading and Beaufort strength to indicate general trends. The wind data has also been compared to North Atlantic design environment. Even though it has been shown that the encountered wind data has been much less severe than in North Atlantic, the extreme loading defined by IACS URS11 is significantly exceeded when whipping is included. If whipping may contribute to collapse, then proper seamanship may be useful in order to limit the extreme loading. The vibration damage is also observed to be high from head to beam seas, and even present in stern seas, but fatigue damage in general is low on this East Asia to Europe trade.

Development of Korean Pedestrian Accident Reconstruction Model (한국형 보행자 사고재현 모형 개발에 관한 연구)

  • Lee, Su-Beom;Lui, Tae-Sun
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.6 s.84
    • /
    • pp.103-113
    • /
    • 2005
  • A pedestrian accident is generally less fully understood than the 'typical' car-to-car collision. For this reason, the analysis of the pedestrian accident is, in many respects, more complicated and demanding. The purpose of this study is to identify clearly the impact point that is the main subject of struggle in pedestrian accidents. In order to develop the model, it is very significant to classify actual accident data including impact velocity. vehicle damage and injury scale of pedestrian. These data were collected from three local branches of RTSA(Road Traffic Safely Authority). The number of collected data were 34 cases and 61.7% of them were fatal accidents. In consequence of analyzing the data by statistical method, it revealed that there is correlation between impact velocity and throw distance. It, also shows that the impact velocity has strong linear correlation to vehicle damage and injury scale. Consequently, reconstruction analysis models of pedestrian accidents considering in local circumstances(such as the physical characteristics of pedestrians and vehicles) was developed However. it is difficult to apply the result of this study to all sorts of pedestrian accidents, because the actual accident data which were used to develop the model were limited. To overcome this limitation, it is necessary to develop an analysis model applicable to diverse circumstances with a wide range of pedestrian accident data on a national basis.

A Boundary Element Analysis for Damage and Failure Process of Brittle Rock using ERACOD (FRACOD를 이용한 취성 암석의 손상 및 파괴에 대한 경계요소 해석)

  • ;Baotang Shen;Ove Stephansson
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.248-260
    • /
    • 2004
  • Damage in brittle rock due to stress increase starts from initiation of microcracks, and then results in failure by forming macro failure planes due to propagation and coalescence of these discrete cracks. Conventionally, continuum approaches using macro-failure criteria or a number of elasto-plastic models have been major solution to implement rock damage and failure. However, actual brittle failure processes can be better described in phenomenological approach if initiation and propagation of discrete fractures are explicitly considered. This study presents damage and failure process of rock using a boundary element code, FRACOD, which has been developed to model fracturing process of rocks. Through a series of numerical uniaxial compressive tests, the feasibility of the developed model was verified, and realistic rock failure process was reproduced considering scale effects in rocks. In addition, the fracturing process and the corresponding rock damage in the vicinity of deep shaft in rock mass were presented as an application of this approach. This approach will be expected to contribute to finding better engineering solutions for the analysis of stability problems in brittle rock masses.

Effect of damage on permeability and hygro-thermal behaviour of HPCs at elevated temperatures: Part 1. Experimental results

  • Gawin, D.;Alonso, C.;Andrade, C.;Majorana, C.E.;Pesavento, F.
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.189-202
    • /
    • 2005
  • This paper presents an analysis of some experimental results concerning micro-structural tests, permeability measurements and strain-stress tests of four types of High-Performance Concrete, exposed to elevated temperatures (up to $700^{\circ}C$). These experimental results, obtained within the "HITECO" research programme are discussed and interpreted in the context of a recently developed mathematical model of hygro-thermal behaviour and degradation of concrete at high temperature, which is briefly presented in the Part 2 paper (Gawin, et al. 2005). Correlations between concrete permeability and porosity micro-structure, as well as between damage and cracks' volume, are found. An approximate decomposition of the thermally induced material damage into two parts, a chemical one related to cement dehydration process, and a thermal one due to micro-cracks' development caused by thermal strains at micro- and meso-scale, is performed. Constitutive relationships describing influence of temperature and material damage upon its intrinsic permeability at high temperature for 4 types of HPC are deduced. In the Part II of this paper (Gawin, et al. 2005) effect of two different damage-permeability coupling formulations on the results of computer simulations concerning hygro-thermo-mechanical performance of concrete wall during standard fire, is numerically analysed.

Molecular Dynamics (MD) Simulation of Ultra-shallow Ion Implantation with a Modified Recoil Ion Approximation

  • Ohseob Kwon;Kim, Kidong;Jihyun Seo;Taeyoung Won
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.735-738
    • /
    • 2003
  • In this paper, we report a molecular dynamics (MD) simulation of the ion implantation for nano-scale devices with ultra-shallow junctions. In order to model the profile of ion distribution in nanometer scale, the molecular dynamics with a damage model has been employed. As an exemplary case, we calculate the dopant profile during the ion implantation of B, As, and Ge.

  • PDF

Seismic Test of a Full Scale Model of Five-Story Stone Pagoda of Sang-Gye-Sa (쌍계사 오층석탐 실물 크기 모델의 지진시험)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.388-395
    • /
    • 1999
  • There occurred a moderate size earthquake of M=5 at Whagae-Myun Hadong-Gun Kyongsangnam-Do of Korea, It caused severe damage to the buildings and other structures is Sang-Gye-Sa a famous and beautiful Buddhist Temple, The 5-story stone pagoda was standing in front of Keumdang. The top component tipped over and fell to the ground during the earthquake. In order to have accurate and quantitative estimate of the intensity of earthquake a full-scale replica is made through rigorous verification process, The completed model was mounted on the shaking table and subjected to th seismic tests. It was observed that the top component overturned at 0.16 G of EPGA when the NS component of the 1940 el Centro earthquake records was used as the input motion. A brief history of this project is presented and important test results are report6ed and their implication is discussed.

  • PDF