• 제목/요약/키워드: damage monitoring system

검색결과 609건 처리시간 0.025초

정적변위센서를 이용한 콘크리트부재의 손상검토 (A Study on the Damage Detect using Static Displacement Sensors in Concrete Elements)

  • 김이성;최영화;김동후
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.157-158
    • /
    • 2011
  • The monitoring to crack damages is studied using the radio frequency system and static displacement sensors. If load is received on the center of the flexible specimen, bonded sensors will be destroyed, and these are become to send signals of damages at the radio frequency system connected with sensors. This study is fundamental research of the monitoring damage system for diagnostic concrete elements using the radio frequency system and static displacement sensors.

  • PDF

모바일 경보와 모바일 웹페이지를 통한 모니터링 시스템 (Monitoring System Using Mobile Warning and Mobile Web-page)

  • 주승환;서희석;이승재;김민수
    • 디지털산업정보학회논문지
    • /
    • 제6권2호
    • /
    • pp.29-38
    • /
    • 2010
  • It often occur to nature disaster that like earthquake, typhoon, etc. around KOREA. A Haiti and Chile also metropolitan area of KOREA occur earthquake. in result, People think of nature disaster. Structures of present age are easily affected by nature disaster. So we are important that warn of dangerous situation as soon as possible. On this study, I introduce Integrated monitoring system that administrator check a event as early. I develop Monitoring System using SMS(Short Message Service). Administrator always monitor structure on real-time using mobile web-page. As Administrator using mobile device like PDA, Administrator always monitor structure. As using this system, Damage of nature disaster is minimized and is prevented post damage.

Damage identification for high-speed railway truss arch bridge using fuzzy clustering analysis

  • Cao, Bao-Ya;Ding, You-Liang;Zhao, Han-Wei;Song, Yong-Sheng
    • Structural Monitoring and Maintenance
    • /
    • 제3권4호
    • /
    • pp.315-333
    • /
    • 2016
  • This study aims to perform damage identification for Da-Sheng-Guan (DSG) high-speed railway truss arch bridge using fuzzy clustering analysis. Firstly, structural health monitoring (SHM) system is established for the DSG Bridge. Long-term field monitoring strain data in 8 different cases caused by high-speed trains are taken as classification reference for other unknown cases. And finite element model (FEM) of DSG Bridge is established to simulate damage cases of the bridge. Then, effectiveness of one fuzzy clustering analysis method named transitive closure method and FEM results are verified using the monitoring strain data. Three standardization methods at the first step of fuzzy clustering transitive closure method are compared: extreme difference method, maximum method and non-standard method. At last, the fuzzy clustering method is taken to identify damage with different degrees and different locations. The results show that: non-standard method is the best for the data with the same dimension at the first step of fuzzy clustering analysis. Clustering result is the best when 8 carriage and 16 carriage train in the same line are in a category. For DSG Bridge, the damage is identified when the strain mode change caused by damage is more significant than it caused by different carriages. The corresponding critical damage degree called damage threshold varies with damage location and reduces with the increase of damage locations.

Evaluation of typhoon induced fatigue damage using health monitoring data for the Tsing Ma Bridge

  • Chan, Tommy H.T.;Li, Z.X.;Ko, J.M.
    • Structural Engineering and Mechanics
    • /
    • 제17권5호
    • /
    • pp.655-670
    • /
    • 2004
  • This paper aims to evaluate the effect of typhoons on fatigue damage accumulation in steel decks of long-span suspension bridges. The strain-time histories at critical locations of deck sections of long-span bridges during different typhoons passing the bridge area are investigated by using on-line strain data acquired from the structural health monitoring system installed on the bridge. The fatigue damage models based on Miner's Law and Continuum Damage Mechanics (CDM) are applied to calculate the increment of fatigue damage due to the action of a typhoon. Accumulated fatigue damage during the typhoon is also calculated and compared between Miner's Law and the CDM method. It is found that for the Tsing Ma Bridge case, the stress spectrum generated by a typhoon is significantly different than that generated by normal traffic and its histogram shapes can be described approximately as a Rayleigh distribution. The influence of typhoon loading on accumulative fatigue damage is more significant than that due to normal traffic loading. The increment of fatigue damage generated by hourly stress spectrum for the maximum typhoon loading may be much greater than those for normal traffic loading. It is, therefore, concluded that it is necessary to evaluate typhoon induced fatigue damage for the purpose of accurately evaluating accumulative fatigue damage for long-span bridges located within typhoon prone regions.

Health monitoring of pressurized pipelines by finite element method using meta-heuristic algorithms along with error sensitivity assessment

  • Amirmohammad Jahan;Mahdi Mollazadeh;Abolfazl Akbarpour;Mohsen Khatibinia
    • Structural Engineering and Mechanics
    • /
    • 제87권3호
    • /
    • pp.211-219
    • /
    • 2023
  • The structural health of a pipeline is usually assessed by visual inspection. In addition to the fact that this method is expensive and time consuming, inspection of the whole structure is not possible due to limited access to some points. Therefore, adopting a damage detection method without the mentioned limitations is important in order to increase the safety of the structure. In recent years, vibration-based methods have been used to detect damage. These methods detect structural defects based on the fact that the dynamic responses of the structure will change due to damage existence. Therefore, the location and extent of damage, before and after the damage, are determined. In this study, fuzzy genetic algorithm has been used to monitor the structural health of the pipeline to create a fuzzy automated system and all kinds of possible failure scenarios that can occur for the structure. For this purpose, the results of an experimental model have been used. Its numerical model is generated in ABAQUS software and the results of the analysis are used in the fuzzy genetic algorithm. Results show that the system is more accurate in detecting high-intensity damages, and the use of higher frequency modes helps to increase accuracy. Moreover, the system considers the damage in symmetric regions with the same degree of membership. To deal with the uncertainties, some error values are added, which are observed to be negligible up to 10% of the error.

Acoustic emission monitoring of damage progression in CFRP retrofitted RC beams

  • Nair, Archana;Cai, C.S.;Pan, Fang;Kong, Xuan
    • Structural Monitoring and Maintenance
    • /
    • 제1권1호
    • /
    • pp.111-130
    • /
    • 2014
  • The increased use of carbon fiber reinforced polymer (CFRP) in retrofitting reinforced concrete (RC) members has led to the need to develop non-destructive techniques that can monitor and characterize the unique damage mechanisms exhibited by such structural systems. This paper presented the damage characterization results of six CFRP retrofitted RC beam specimens tested in the laboratory and monitored using acoustic emission (AE). The focus of this study was to continuously monitor the change in AE parameters and analyze them both qualitatively and quantitatively, when brittle failure modes such as debonding occur in these beams. Although deterioration of structural integrity was traceable and can be quantified by monitoring the AE data, individual failure mode characteristics could not be identified due to the complexity of the system failure modes. In all, AE was an effective non-destructive monitoring tool that can trace the failure progression in RC beams retrofitted with CFRP. It would be advantageous to isolate signals originating from the CFRP and concrete, leading to a more clear understanding of the progression of the brittle damage mechanism involved in such a structural system. For practical applications, future studies should focus on spectral analysis of AE data from broadband sensors and automated pattern recognition tools to classify and better correlate AE parameters to failure modes observed.

압전센서를 이용하는 철로에서의 손상 검색 기술 (Damage Detection of Railroad Tracks Using Piezoelectric Sensors)

  • 윤정방;박승희;다니엘 인만
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.240-247
    • /
    • 2006
  • Piezoelectric sensor-based health monitoring technique using a two-step support vector machine (SYM) classifier is discussed for damage identification of a railroad track. An active sensing system composed of two PZT patches was investigated in conjunction with both impedance and guided wave propagation methods to detect two kinds of damage of the railroad track (one is a hole damage of 0.5cm in diameter at web section and the other is a transverse cut damage of 7.5cm in length and 0.5cm in depth at head section). Two damage-sensitive features were extracted one by one from each method; a) feature I: root mean square deviations (RMSD) of impedance signatures and b) feature II: wavelet coefficients for $A_0$ mode of guided waves. By defining damage indices from those damage-sensitive features, a two-dimensional damage feature (2-D DF) space was made. In order to minimize a false-positive indication of the current active sensing system, a two-step SYM classifier was applied to the 2-D DF space. As a result, optimal separable hyper-planes were successfully established by the two-step SYM classifier: Damage detection was accomplished by the first step-SYM, and damage classification was also carried out by the second step-SYM. Finally, the applicability of the proposed two-step SYM classifier has been verified by thirty test patterns.

  • PDF

Embedment of structural monitoring algorithms in a wireless sensing unit

  • Lynch, Jerome Peter;Sundararajan, Arvind;Law, Kincho H.;Kiremidjian, Anne S.;Kenny, Thomas;Carryer, Ed
    • Structural Engineering and Mechanics
    • /
    • 제15권3호
    • /
    • pp.285-297
    • /
    • 2003
  • Complementing recent advances made in the field of structural health monitoring and damage detection, the concept of a wireless sensing network with distributed computational power is proposed. The fundamental building block of the proposed sensing network is a wireless sensing unit capable of acquiring measurement data, interrogating the data and transmitting the data in real time. The computational core of a prototype wireless sensing unit can potentially be utilized for execution of embedded engineering analyses such as damage detection and system identification. To illustrate the computational capabilities of the proposed wireless sensing unit, the fast Fourier transform and auto-regressive time-series modeling are locally executed by the unit. Fast Fourier transforms and auto-regressive models are two important techniques that have been previously used for the identification of damage in structural systems. Their embedment illustrates the computational capabilities of the prototype wireless sensing unit and suggests strong potential for unit installation in automated structural health monitoring systems.

화력발전소 고온 증기배관 실시간 변위감시 시스템 개발 (Development of On-line Displacement Monitoring System for High Temperature Steam Pipe of Fossil Power Plant)

  • 이영신;현중섭
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.83-89
    • /
    • 2005
  • Most domestic fossil power plants have exceeded 100,000 hours of operation with the severe operating condition. Among the critical components of fossil power plant, high temperature steam pipe systems have had a many problems and damage from unstable displacement behavior because of frequent start up and shut down. In order to prevent the serious damage and failure of the critical pipe system in fossil power plants, 3-dimensional displacement measurement system was developed for the on-line monitoring. Displacement measurement system was developed with a use of a LVDT type sensor and two rotary encoder type sensors. This system was installed and operated on the real power plant successfully.

다단계민감도 분석 및 인공신경망을 이용한 최적 계측시스템 선정기법 (Optimum Design of Structural Monitoring System using Artificial Neural Network and Multilevel Sensitivity Analysis)

  • 김상효;김병진
    • 전산구조공학
    • /
    • 제10권4호
    • /
    • pp.303-313
    • /
    • 1997
  • 계측점의 규모가 제한되어 있는 경우에 대형구조물의 모든 부재의 손상을 추정하는 것은 기술적으로 불가능하다. 따라서 본 연구에서는 최근에 국내외에서 많이 연구되고 있는 인공신경망이론을 이용하여 구조물의 손상을 추정하는 기법을 개발하였으며, 대형구조물의 손상을 계측자료로부터 보다 효과적으로 평가하기 위해 두 단계로 수행되는 손상부재 평가과정을 개발하였다. 먼저 합리적인 평가대상 부재선택을 위해 구조물의 파괴 또는 이상거동 등에 가장 큰 영향을 미치는 부재를 민감도분석을 통해 선정한 후, 선정된 부재의 손상추정에 가장 영향을 미치는 계측점과 적절한 계측기의 수를 민감도분석기법을 이용해 선정하는 기법이다. 다양한 예제를 통하여 본 연구에서 제안된 방법들의 적용가능성을 검증한 결과, 본 연구에서 개발한 기법을 적용하면 제한된 수의 계측자료를 가지고 보다 효과적으로 대형구조물의 파괴나 이상거동을 사전에 감지할 수 있는 것으로 분석되었다.

  • PDF