• 제목/요약/키워드: damage monitoring system

검색결과 609건 처리시간 0.029초

Real-time structural damage detection using wireless sensing and monitoring system

  • Lu, Kung-Chun;Loh, Chin-Hsiung;Yang, Yuan-Sen;Lynch, Jerome P.;Law, K.H.
    • Smart Structures and Systems
    • /
    • 제4권6호
    • /
    • pp.759-777
    • /
    • 2008
  • A wireless sensing system is designed for application to structural monitoring and damage detection applications. Embedded in the wireless monitoring module is a two-tier prediction model, the auto-regressive (AR) and the autoregressive model with exogenous inputs (ARX), used to obtain damage sensitive features of a structure. To validate the performance of the proposed wireless monitoring and damage detection system, two near full scale single-story RC-frames, with and without brick wall system, are instrumented with the wireless monitoring system for real time damage detection during shaking table tests. White noise and seismic ground motion records are applied to the base of the structure using a shaking table. Pattern classification methods are then adopted to classify the structure as damaged or undamaged using time series coefficients as entities of a damage-sensitive feature vector. The demonstration of the damage detection methodology is shown to be capable of identifying damage using a wireless structural monitoring system. The accuracy and sensitivity of the MEMS-based wireless sensors employed are also verified through comparison to data recorded using a traditional wired monitoring system.

음향 전파 모델을 이용한 천연가스 배관용 타공사 모니터링 시스템의 개발 (The Development of Third-Party Damage Monitoring System for Natural Gas Pipeline Using Sound Propagation Model)

  • 신승목;서진호;띤;김상봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.905-910
    • /
    • 2003
  • In this paper, we develop real-time monitoring system to detect third-party damage on natural gas pipeline by using sound propagation model. Since many third-party incidents cause damage that does not lead to immediate rupture but can grow with time, the developed real-time monitoring system can execute a significant role in reducing many third-party damage incidents. The developed system is composed of three steps as follows: i) DSP based system, ii) wireless communication system, iii) the calculation and monitoring software to detect the position of third-party damage using the propagation speed of acoustic wave. Furthermore, the developed system was set at practical offshore pipeline between two islands in Korea and it has been operating in real time.

  • PDF

Health monitoring of a bridge system using strong motion data

  • Mosalam, K.M.;Arici, Y.
    • Smart Structures and Systems
    • /
    • 제5권4호
    • /
    • pp.427-442
    • /
    • 2009
  • In this paper, the acceptability of system identification results for health monitoring of instrumented bridges is addressed. This is conducted by comparing the confidence intervals of identified modal parameters for a bridge in California, namely Truckee I80/Truckee river bridge, with the change of these parameters caused by several damage scenarios. A challenge to the accuracy of the identified modal parameters involves consequences regarding the damage detection and health monitoring, as some of the identified modal information is essentially not useable for acquiring a reliable damage diagnosis of the bridge system. Use of strong motion data has limitations that should not be ignored. The results and conclusions underline these limitations while presenting the opportunities offered by system identification using strong motion data for better understanding and monitoring the health of bridge systems.

Development of Third-Party Damage Monitoring System for Natural Gas Pipeline

  • Shin, Seung-Mok;Suh, Jin-Ho;Im, Jae-Sung;Kim, Sang-Bong;Yoo, Hui-Ryong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권10호
    • /
    • pp.1423-1430
    • /
    • 2003
  • In this paper, we develop a real time monitoring system to detect third-party damage on natural gas pipeline. When the damage due to third-party incidents causes an immediate rupture, the developed on-line monitoring system can help reducing the sequences of event at once. Moreover, since many third-party incidents cause damage that does not lead to immediate rupture but can grow with time, the developed on-line monitoring system can execute a significant role in reducing many third-party damage incidents. Also, when the damage is given at a point on natural gas pipeline, the acoustic wave is propagated very fast about 421.3 m/s. Therefore, the data processing time should be very short in order to detect precisely the impact position. Generally, the pipeline is laid under ground or sea and the length is very long. So a wireless data communication method is recommendable and the sensing positions are limited by laid circumstance and setting cost of sensors. The calculation and monitoring software is developed by an algorithm using the propagation speed of acoustic wave and data base system based on wireless communication and DSP systems. The developed monitoring system is examined by field testing at Balan pilot plant, KOGAS being done in order to demonstrate its validity through reactive detection of third-party contact with pipelines. Furthermore, the development system was set at the practical pipelines such as an offshore pipeline between two islands Yul-Do and Youngjong-Do, and a land branch of Pyoungtaek, Korea and it has been operating in real time.

무선데이타 통신을 이용한 실시간 타공사 감시 시스템 개발 (Development of Real Time Monitoring System for third party damage Detection Using Wireless Data Communicating)

  • 박승수;조성호;유휘룡;김동규;전경수;박대진;구성자;노용우
    • 한국가스학회지
    • /
    • 제4권3호
    • /
    • pp.59-64
    • /
    • 2000
  • 배관에 가해지는 충격을 실시간으로 모니터링하고, 충격위치를 산출 할 수 있는 모니터링 시스템을 무선데이타 통신을 이용하여 개발하였고, 마산만 해저배관에 현장적용 후 충격실험을 통하여 유용성을 검증하였다. 실험에 사용된 배관은 총 길이 1365m, 운용압력 8.6kgf/cm^2$$, 직경 12inch인 실제 운용중인 해저가스배관을 사용하였다. 충격실험에서 충격위치 계산오차는 배관내에서 충격음파 속도의 $1\%$정도의 거리였다.

  • PDF

가속도 및 임피던스 신호의 특징분류를 통한 교량 연결부의 하이브리드 손상 모니터링 기법 (Hybrid Damage Monitoring Technique for Bridge Connection Via Pattern-Recognition of Acceleration and Impedance Signals)

  • 김정태;나원배;홍동수;이병준
    • 한국지진공학회논문집
    • /
    • 제10권6호
    • /
    • pp.57-65
    • /
    • 2006
  • 본 논문에서는 구조물의 전역적인 손상도 평가와 국부 구조 연결부의 손상 검색을 동시에 수행할 수 있는 하이브리드 구조 손상 모니터링 체계가 제시되었다. 하이브리드 손상 모니터링 체계는 진동기반 기법과 전기/역학적 임피던스 기법으로 구성되었다. 진동기반 기법은 구조물의 모드특징의 변화를 사용하여 구조물의 전역적 특성의 변화를 감지하고, 전기/역학적 임피던스 기법은 PZT 센서의 저항 변화를 사용하여 국부 구조 연결부의 손상 여부를 검출한다. 제안된 하이브리드 모니터링 체계를 검증하기 위해 구조 연결부의 볼트 풀림 상황을 손상 시나리오로 선택하였으며, 가속도 응답과 임피던스 응답 신호가 계측되었다. 실험 결과, 제안된 하이브리드 모니터링 체계를 통해 구조물의 전역적 손상 상태와 국부 구조 연결부의 손상을 정확하게 모니터링 할 수 있었다.

구조 접합부의 손상검색을 위한 하이브리드 모니터링 (Hybrid Monitoring for Damage Detection in Structural Joints)

  • 김정태;나원배;이병준;홍동수;도한성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.225-231
    • /
    • 2006
  • The purpose of this study is to develop a promising hybrid structural health monitoring system for structural joints. For this propose, the combined use of vibration-based techniques and electro-mechanical impedance technique is employed. For the verification of the proposed health monitoring scheme, a series of damage scenarios are designed to simulate various situations at which the connection joints can experience during their service life. The obtained experimental results, modal parameters and electro-magnetic impedance signatures, are carefully analyzed to recognize the connecting states and the target damage locations. From the analysis. it is shown that the proposed hybrid health monitoring system is successful for acquiring global and local damage information on the structural joints.

  • PDF

Development of Acceleration-PZT Impedance Hybrid Sensor Nodes Embedding Damage Identification Algorithm for PSC Girders

  • Park, Jae-Hyung;Lee, So-Young;Kim, Jeong-Tae
    • 한국해양공학회지
    • /
    • 제24권3호
    • /
    • pp.1-10
    • /
    • 2010
  • In this study, hybrid smart sensor nodes were developed for the autonomous structural health monitoring of prestressed concrete (PSC) girders. In order to achieve the objective, the following approaches were implemented. First, we show how two types of smart sensor nodes for the hybrid health monitoring were developed. One was an acceleration-based smart sensor node using an MEMS accelerometer to monitor the overall damage in concrete girders. The other was an impedance-based smart sensor node for monitoring the local damage in prestressing tendons. Second, a hybrid monitoring algorithm using these smart sensor nodes is proposed for the autonomous structural health monitoring of PSC girders. Finally, we show how the performance of the developed system was evaluated using a lab-scaled PSC girder model for which dynamic tests were performed on a series of prestress-loss cases and girder damage cases.

Intelligent bolt-jointed system integrating piezoelectric sensors with shape memory alloys

  • Park, Jong Keun;Park, Seunghee
    • Smart Structures and Systems
    • /
    • 제17권1호
    • /
    • pp.135-147
    • /
    • 2016
  • This paper describes a smart structural system, which uses smart materials for real-time monitoring and active control of bolted-joints in steel structures. The goal of this research is to reduce the possibility of failure and the cost of maintenance of steel structures such as bridges, electricity pylons, steel lattice towers and so on. The concept of the smart structural system combines impedance based health monitoring techniques with a shape memory alloy (SMA) washer to restore the tension of the loosened bolt. The impedance-based structural health monitoring (SHM) techniques were used to detect loosened bolts in bolted-joints. By comparing electrical impedance signatures measured from a potentially damage structure with baseline data obtained from the pristine structure, the bolt loosening damage could be detected. An outlier analysis, using generalized extreme value (GEV) distribution, providing optimal decision boundaries, has been carried out for more systematic damage detection. Once the loosening damage was detected in the bolted joint, the external heater, which was bonded to the SMA washer, actuated the washer. Then, the heated SMA washer expanded axially and adjusted the bolt tension to restore the lost torque. Additionally, temperature variation due to the heater was compensated by applying the effective frequency shift (EFS) algorithm to improve the performance of the diagnostic results. An experimental study was conducted by integrating the piezoelectric material based structural health monitoring and the SMA-based active control function on a bolted joint, after which the performance of the smart 'self-monitoring and self-healing bolted joint system' was demonstrated.

Three-dimensional structural health monitoring based on multiscale cross-sample entropy

  • Lin, Tzu Kang;Tseng, Tzu Chi;Lainez, Ana G.
    • Earthquakes and Structures
    • /
    • 제12권6호
    • /
    • pp.673-687
    • /
    • 2017
  • A three-dimensional; structural health monitoring; vertical; planar; cross-sample entropy; multiscaleA three-dimensional structural health monitoring (SHM) system based on multiscale entropy (MSE) and multiscale cross-sample entropy (MSCE) is proposed in this paper. The damage condition of a structure is rapidly screened through MSE analysis by measuring the ambient vibration signal on the roof of the structure. Subsequently, the vertical damage location is evaluated by analyzing individual signals on different floors through vertical MSCE analysis. The results are quantified using the vertical damage index (DI). Planar MSCE analysis is applied to detect the damage orientation of damaged floors by analyzing the biaxial signals in four directions on each damaged floor. The results are physically quantified using the planar DI. With progressive vertical and planar analysis methods, the damaged floors and damage locations can be accurately and efficiently diagnosed. To demonstrate the performance of the proposed system, performance evaluation was conducted on a three-dimensional seven-story steel structure. According to the results, the damage condition and elevation were reliably detected. Moreover, the damage location was efficiently quantified by the DI. Average accuracy rates of 93% (vertical) and 91% (planar) were achieved through the proposed DI method. A reference measurement of the current stage can initially launch the SHM system; therefore, structural damage can be reliably detected after major earthquakes.