• Title/Summary/Keyword: damage modes

Search Result 321, Processing Time 0.031 seconds

A Study on the Measures against Suicide Terrorism (자살테러에 대한 대책 연구)

  • Choi, Jin-Tai
    • Journal of the Society of Disaster Information
    • /
    • v.2 no.1
    • /
    • pp.139-155
    • /
    • 2006
  • Over the past two decades suicide terrorism has become an ever-widening phenomenon. When suicide terrorism was first introduced in the Middle East it seemed that this new phenomenon was invincible and that it might change the innate imbalance between terror groups and their rivalry governments. This did not in fact occur. Looking at history of terrorism, it can be seen that suicide attacks are in actuality a very old modus operandi. However, contemporary suicide terrorism differs from such historical tactics, just as the whole phenomenon of terrorism differs from ancient modes of warfare. Modern suicide terrorism is aimed at causing devastating physical damage. through which it inflicts profound fear and anxiety. Its goal is to produce a negative psychological effect on an entire population rather than just the victims of the actual attack. The relatively high number of casualties guaranteed in such attacks, which are usually carried out in crowded areas, ensures full media coverage. Thus, suicide terrorism, ranks with other spectacular modus operandi such as blowing up airplanes in mid air or the use of Weapons of Mass Destruction as a sure means to win maximum effect. For the purposes of this paper a suicide terror attack is defined as a politically motivated violent attack perpetrated by a self-aware individual (or individuals) who actively and purposely causes his own death through blowing himself up along with his chosen target. The perpetrator's ensured death is a precondition for the success of his mission. The greatest potential risk suicide terrorism may pose in future is if terrorists carry out operations combined with other spectacular tactics such as blowing up airplanes or the use of Weapons of Mass Destruction. Such a combination will increase immensely the death toll of a single terror attack and will have a shocking psychological effect on public moral. At this level suicide terrorism would constitute a genuine strategic threat and would probably be confronted as such. This study portrays a general overview of the modern history of suicide terror activity worldwide, focusing on its main characteristics and the various aims and motivations of the terror groups involved. In addition, This study provides an overview what is to be done to prevent such terrorist attacks.

  • PDF

Numerical Experiments of the Seiche in Young-il Bay and Pohang New Harbor, Korea (영일과 포항신항의 해면부진동에 관한 수치실험)

  • 박한일;정종율
    • 한국해양학회지
    • /
    • v.21 no.4
    • /
    • pp.245-258
    • /
    • 1986
  • A two-dimensional numerical model is developed to investigate the phenomenon of forced seiche caused by the incident long waves. This model is applied to Young-il Bay and Pohang New Harbor, where the seiche is most frequently observed and the damage of the seiche is serious compared with the other harbors in Korea. Some results on this study are as follows; 1. The natural periods of the first two modes obtained from the present model are about 70 and 25 minutes respectively for Young-il Bay, and about 25 and 7.5 minutes for Pohang New Harbor. These results are well consistent with those obtained by the theoretical formula, the spectral analysis, and the statistical investigation of the recorded data. 2. Since the fundamental natural period of Pohang New Harbor is almost the same as the second natural period of Young-il Bay, the seiche in Pohang New Harbor can be strongly amplified by the Oscillation in Young-il Bay. Therefore, the most strong seiche in Pohang New Harbor can occur when the long wave of about 25-minute period come into Young-il Bay.

  • PDF

Study on stiffness deterioration in steel-concrete composite beams under fatigue loading

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling;Ding, Yong
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.499-509
    • /
    • 2020
  • The purpose of this paper is to investigate the degradation law of stiffness of steel-concrete composite beams after certain fatigue loads. First, six test beams with stud connectors were designed and fabricated for static and fatigue tests. The resultant failure modes under different fatigue loading cycles were compared. And an analysis was performed for the variations in the load-deflection curves, residual deflections and relative slips of the composite beams during fatigue loading. Then, the correlations among the stiffness degradation of each test beam, the residual deflection and relative slip growth during the fatigue test were investigated, in order to clarify the primary reasons for the stiffness degradation of the composite beams. Finally, based on the stiffness degradation function under fatigue loading, a calculation model for the residual stiffness of composite beams in response to fatigue loading cycles was established by parameter fitting. The results show that the stiffness of composite beams undergoes irreversible degradation under fatigue loading. And stiffness degradation is associated with the macrobehavior of material fatigue damage and shear connection degradation. In addition, the stiffness degradation of the composite beams exhibit S-shaped monotonic decreasing trends with fatigue cycles. The general agreement between the calculation model and experiment shows good applicability of the proposed model for specific beam size and fatigue load parameters. Moreover, the research results provide a method for establishing a stiffness degradation model for composite beams after fatigue loading.

Impact of rock microstructures on failure processes - Numerical study based on DIP technique

  • Yu, Qinglei;Zhu, Wancheng;Tang, Chun'an;Yang, Tianhong
    • Geomechanics and Engineering
    • /
    • v.7 no.4
    • /
    • pp.375-401
    • /
    • 2014
  • It is generally accepted that material heterogeneity has a great influence on the deformation, strength, damage and failure modes of rock. This paper presents numerical simulation on rock failure process based on the characterization of rock heterogeneity by using a digital image processing (DIP) technique. The actual heterogeneity of rock at mesoscopic scale (characterized as minerals) is retrieved by using a vectorization transformation method based on the digital image of rock surface, and it is imported into a well-established numerical code Rock Failure Process Analysis (RFPA), in order to examine the effect of rock heterogeneity on the rock failure process. In this regard, the numerical model of rock could be built based on the actual characterization of the heterogeneity of rock at the meso-scale. Then, the images of granite are taken as an example to illustrate the implementation of DIP technique in simulating the rock failure process. Three numerical examples are presented to demonstrate the impact of actual rock heterogeneity due to spatial distribution of constituent mineral grains (e.g., feldspar, quartz and mica) on the macro-scale mechanical response, and the associated rock failure mechanism at the meso-scale level is clarified. The numerical results indicate that the shape and distribution of constituent mineral grains have a pronounced impact on stress distribution and concentration, which may further control the failure process of granite. The proposed method provides an efficient tool for studying the mechanical behaviors of heterogeneous rock and rock-like materials whose failure processes are strongly influenced by material heterogeneity.

Finite element simulations on the ultimate response of extended stiffened end-plate joints

  • Tartaglia, Roberto;D'Aniello, Mario;Zimbru, Mariana;Landolfo, Raffaele
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.727-745
    • /
    • 2018
  • The design criteria and the corresponding performance levels characterize the response of extended stiffened end-plate beam-to-column joints. In order to guarantee a ductile behavior, hierarchy criteria should be adopted to enforce the plastic deformations in the ductile components of the joint. However, the effectiveness of thesecriteria can be impaired if the actual resistance of the end-plate material largely differs from the design value due to the potential activation of brittle failure modes of the bolt rows (e.g., occurrence of failure mode 3 in the place of mode 1 per bolt row). Also the number and the position of bolt rows directly affect the joint response. The presence of a bolt row in the center of the connection does not improve the strength of the joint under both gravity, wind and seismic loading, but it can modify the damage pattern of ductile connections, reducing the gap opening between the end-plate and the column face. On the other hand, the presence of a central bolt row can influence the capacity of the joint to resist the catenary actions developing under a column loss scenario, thus improving the joint robustness. Aiming at investigating the influence of these features on both the cyclic behavior and the response under column loss, a wide range of finite element analyses (FEAs) were performed and the main results are described and discussed in this paper.

In-situ Raman Spectroscopic Study of Nickel-base Alloys in Nuclear Power Plants and Its Implications to SCC

  • Kim, Ji Hyun;Bahn, Chi Bum;Hwang, Il Soon
    • Corrosion Science and Technology
    • /
    • v.3 no.5
    • /
    • pp.198-208
    • /
    • 2004
  • Although there has been no general agreement on the mechanism of primary water stress corrosion cracking (PWSCC) as one of major degradation modes of Ni-base alloys in pressurized water reactors (PWR's), common postulation derived from previous studies is that the damage to the alloy substrate can be related to mass transport characteristics and/or repair properties of overlaid oxide film. Recently, it was shown that the oxide film structure and PWSCC initiation time as well as crack growth rate were systematically varied as a function of dissolved hydrogen concentration in high temperature water, supporting the postulation. In order to understand how the oxide film composition can vary with water chemistry, this study was conducted to characterize oxide films on Alloy 600 by an in-situ Raman spectroscopy. Based on both experimental and thermodynamic prediction results, Ni/NiO thermodynamic equilibrium condition was defined as a function of electrochemical potential and temperature. The results agree well with Attanasio et al.'s data by contact electrical resistance measurements. The anomalously high PWSCC growth rate consistently observed in the vicinity of Ni/NiO equilibrium is then attributed to weak thermodynamic stability of NiO. Redox-induced phase transition between Ni metal and NiO may undermine the integrity of NiO and enhance presumably the percolation of oxidizing environment through the oxide film, especially along grain boundaries. The redox-induced grain boundary oxide degradation mechanism has been postulated and will be tested by using the in-situ Raman facility.

Study on the Classificaition of Shoulder-Arm Pain in the Pre-Studies on Clinical Treatment of Shoulder-Arm Pain (견비통 치료 관련 선행연구에서 견비통의 유형 분류에 관한 연구)

  • Kim, Hong-Jae;Kim, Myung-Dong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.8-18
    • /
    • 2011
  • To have effective treatment for shoulder arm pain, we searched the cause, symptom, etiology, classification of the pain areas, acupuncture points, and muscles along the meridians, and acquired the following results. Shoulder-pain is mainly divided into the malfunction of viscera and entrails, damage due to the weakness of essence and qi, abnormal status of muscle function, change of joints, disease in the nerve and vessel, and the internal injury due to seven modes of emotions. Pain of shoulder joints are pain in the local area of shoulder joints, referred pain of shoulder, neck, and shoulder-arm, numbnes and swelling of muscle, and muslce weakness. Shoulder-arm pain is classified as four types of pain: shoulder-joint pain, shoulder-back pain, shoulder-chest pain, and shoulder-arm-elbow pain. And shoulder-arm-elbow pain is again divided into the shoulder-blade pain, shoulder-arm pain, shoulder-elbow pain. The related meridians on shoulder pain are the three yin meridians of hand, Kidney Meridian, Conception Meridian, three yang meridians of hand, Bladder Meridian, Governor Meridian Acupuncture points for shoulder pain are in the acupuncture points of the 10 meridians and a-shi points. Thre related meridian muscles on shoulder-pain are the three yin and yang meridians of hand, and their related muscles are the ones that are connected with the front, back, and chest side muscles of shoulder joints, and the ones that are connected with the front and back side muscles of arm.

Integrated Optimal Design for Suspension to Improve Load/Unload Performance (로드/언로드 성능향상을 위한 서스팬션의 구조최적화)

  • Kim, Ki-Hoon;Son, Suk-Ho;Park, Kyoung-Su;Yoon, Sang-Joon;Park, No-Cheol;Yang, Hyun-Seok;Choi, Dong-Hoon;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.130-137
    • /
    • 2006
  • The HDD(hard disk drive) using Load/unload(L/UL) technology includes the benefits which are increased areal density, reduced power consumption and improved shock resistance than those of contact-start-stop(CSS). It has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. The main objects of L/UL are no slider-disk contact or no media damage. For realizing those, we must consider many design parameters in L/UL system. In this paper, we focus on lift-off force. The 'lift-off' force, defined as the minimum air bearing force, is another very important indicator of unloading performance. A large amplitude of lift-off force increases the ramp force, the unloading time, the slider oscillation and contact-possibility. To minimize 'lift-off' force we optimizes the slider and suspension using the integrated optimization frame, which automatically integrates the analysis with the optimization and effectively implements the repetitive works between them. In particular, this study is carried out the optimal design considering the process of modes tracking through the entire optimization processes. As a result, we yield the equation which can easily find a lift-off force and structural optimization for suspension.

  • PDF

High Performance ESD/Surge Protection Capability of Bidirectional Flip Chip Transient Voltage Suppression Diodes

  • Pharkphoumy, Sakhone;Khurelbaatar, Zagarzusem;Janardhanam, Valliedu;Choi, Chel-Jong;Shim, Kyu-Hwan;Daoheung, Daoheung;Bouangeun, Bouangeun;Choi, Sang-Sik;Cho, Deok-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.196-200
    • /
    • 2016
  • We have developed new electrostatic discharge (ESD) protection devices with, bidirectional flip chip transient voltage suppression. The devices differ in their epitaxial (epi) layers, which were grown by reduced pressure chemical vapor deposition (RPCVD). Their ESD properties were characterized using current-voltage (I-V), capacitance-voltage (C-V) measurement, and ESD analysis, including IEC61000-4-2, surge, and transmission line pulse (TLP) methods. Two BD-FCTVS diodes consisting of either a thick (12 μm) or thin (6 μm), n-Si epi layer showed the same reverse voltage of 8 V, very small reverse current level, and symmetric I-V and C-V curves. The damage found near the corner of the metal pads indicates that the size and shape of the radius governs their failure modes. The BD-FCTVS device made with a thin n- epi layer showed better performance than that made with a thick one in terms of enhancement of the features of ESD robustness, reliability, and protection capability. Therefore, this works confirms that the optimization of device parameters in conjunction with the doping concentration and thickness of epi layers be used to achieve high performance ESD properties.

Evaluation of Composite Laminates for Aircraft Primary-Structure Applications Using Non-Linear Parameter of Ultrasonic Guided Wave (유도초음파의 비선형 파라미터를 이용한 항공기 구조체의 복합재료 적층판 열화 평가)

  • Cho, Youn-Ho;Kim, Do-Youn;Choi, Heung-Soap;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.126-131
    • /
    • 2010
  • The purpose of this study is to assess the condition of composites used in aircraft under varying temperature environment with ultrasound guided wave technique. Investigation of crucial influential factor on the composite health monitoring related to aircraft operational environments such as the number of thermal cycles and temperature deviation between ground level and flight altitude has been of a great concern for aircraft safety issue. In this study, ultrasonic guided wave health monitoring scheme is proposed to evaluate composite specimens damaged with the thermal fatigue simulating aircraft operational condition. Guided wave dispersion curves are used to select right modes which show a promising sensitivity to each different thermal fatigue damage level. The present approach can be also implemented as one of on-lines health monitoring tools for aircraft.